|
import soundfile as sf |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import gradio as gr |
|
import sox |
|
import subprocess |
|
from fuzzywuzzy import fuzz |
|
from data import get_data |
|
|
|
|
|
DATASET = get_data() |
|
|
|
def read_file_and_process(wav_file): |
|
filename = wav_file.split('.')[0] |
|
filename_16k = filename + "16k.wav" |
|
resampler(wav_file, filename_16k) |
|
speech, _ = sf.read(filename_16k) |
|
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
return inputs |
|
|
|
|
|
def resampler(input_file_path, output_file_path): |
|
command = ( |
|
f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn " |
|
f"{output_file_path}" |
|
) |
|
subprocess.call(command, shell=True) |
|
|
|
|
|
def parse_transcription(logits): |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) |
|
return transcription |
|
|
|
|
|
def parse(wav_file): |
|
input_values = read_file_and_process(wav_file) |
|
with torch.no_grad(): |
|
logits = model(**input_values).logits |
|
user_question = parse_transcription(logits) |
|
return user_question |
|
|
|
|
|
|
|
def get_answer(wav_file=None): |
|
|
|
input_values = read_file_and_process(wav_file) |
|
|
|
with torch.no_grad(): |
|
logits = model(**input_values).logits |
|
user_question = parse_transcription(logits) |
|
|
|
highest_score = 0 |
|
best_answer = None |
|
|
|
for item in DATASET: |
|
similarity_score = fuzz.token_set_ratio(user_question, item["question"]) |
|
if similarity_score > highest_score: |
|
highest_score = similarity_score |
|
best_answer = item["answer"] |
|
|
|
if highest_score >= 80: |
|
return best_answer |
|
else: |
|
return "I don't have an answer to that question." |
|
|
|
|
|
model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian" |
|
processor = Wav2Vec2Processor.from_pretrained(model_id) |
|
model = Wav2Vec2ForCTC.from_pretrained(model_id) |
|
|
|
input_ = [ |
|
gr.Audio(source="microphone", |
|
type="filepath", |
|
label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.", |
|
show_download_button=True, |
|
show_edit_button=True, |
|
), |
|
|
|
|
|
|
|
|
|
] |
|
|
|
txtbox = gr.Textbox( |
|
label="پاسخ شما: ", |
|
lines=5, |
|
text_align="right", |
|
show_label=True, |
|
show_copy_button=True, |
|
) |
|
|
|
title = "Speech-to-Text (persian)" |
|
description = "، توجه داشته باشید که هرچه گفتار شما شمرده تر باشد خروجی با کیفیت تری دارید.روی دکمه ضبط صدا کلیک کنید و سپس دسترسی مرورگر خود را به میکروفون دستگاه بدهید، سپس شروع به صحبت کنید و برای اتمام ضبط دوباره روی دکمه کلیک کنید" |
|
article = "<p style='text-align: center'><a href='https://github.com/nimaprgrmr'>Large-Scale Self- and Semi-Supervised Learning for Speech Translation</a></p>" |
|
|
|
demo = gr.Interface(fn=get_answer, inputs = input_, outputs=txtbox, title=title, description=description, article = article, |
|
streaming=True, interactive=True, |
|
analytics_enabled=False, show_tips=False, enable_queue=True) |
|
demo.launch(share=True) |