import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import gradio as gr import sox import subprocess from fuzzywuzzy import fuzz from data import get_data DATASET = get_data() def read_file_and_process(wav_file): filename = wav_file.split('.')[0] filename_16k = filename + "16k.wav" resampler(wav_file, filename_16k) speech, _ = sf.read(filename_16k) inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) return inputs def resampler(input_file_path, output_file_path): command = ( f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn " f"{output_file_path}" ) subprocess.call(command, shell=True) def parse_transcription(logits): predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) return transcription def parse(wav_file): input_values = read_file_and_process(wav_file) with torch.no_grad(): logits = model(**input_values).logits user_question = parse_transcription(logits) return user_question # Function to retrieve an answer based on a question (using fuzzy matching) def get_answer(wav_file=None): input_values = read_file_and_process(wav_file) with torch.no_grad(): logits = model(**input_values).logits user_question = parse_transcription(logits) highest_score = 0 best_answer = None for item in DATASET: similarity_score = fuzz.token_set_ratio(user_question, item["question"]) if similarity_score > highest_score: highest_score = similarity_score best_answer = item["answer"] if highest_score >= 80: # Adjust the similarity threshold as needed return best_answer else: return "I don't have an answer to that question." model_id = "jonatasgrosman/wav2vec2-large-xlsr-53-persian" processor = Wav2Vec2Processor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) input_ = [ gr.Audio(source="microphone", type="filepath", label="لطفا دکمه ضبط صدا را بزنید و شروع به صحبت کنید و بعذ از اتمام صحبت دوباره دکمه ضبط را فشار دهید.", show_download_button=True, show_edit_button=True, ), # gr.Textbox(label="سوال خود را بنویسید.", # lines=3, # text_align="right", # show_label=True,) ] txtbox = gr.Textbox( label="پاسخ شما: ", lines=5, text_align="right", show_label=True, show_copy_button=True, ) title = "Speech-to-Text (persian)" description = "، توجه داشته باشید که هرچه گفتار شما شمرده تر باشد خروجی با کیفیت تری دارید.روی دکمه ضبط صدا کلیک کنید و سپس دسترسی مرورگر خود را به میکروفون دستگاه بدهید، سپس شروع به صحبت کنید و برای اتمام ضبط دوباره روی دکمه کلیک کنید" article = "
Large-Scale Self- and Semi-Supervised Learning for Speech Translation
" demo = gr.Interface(fn=get_answer, inputs = input_, outputs=txtbox, title=title, description=description, article = article, streaming=True, interactive=True, analytics_enabled=False, show_tips=False, enable_queue=True) demo.launch(share=True)