nimrita commited on
Commit
ff29cc2
1 Parent(s): 2a61077

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import torch
4
+ from datasets import load_dataset
5
+
6
+ from transformers import pipeline, VitsModel, VitsTokenizer
7
+
8
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
+
10
+ # load speech translation checkpoint
11
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
12
+
13
+
14
+ # load text-to-speech checkpoint and tokenizer
15
+
16
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
17
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
18
+ model.to(device)
19
+
20
+
21
+
22
+ def translate(audio):
23
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language":"german"})
24
+ return outputs["text"]
25
+
26
+
27
+ def synthesise(text):
28
+ inputs = tokenizer(text_example, return_tensors="pt")
29
+ input_ids = inputs["input_ids"]
30
+
31
+ with torch.no_grad():
32
+ outputs = model(input_ids)
33
+
34
+ speech = outputs.audio[0]
35
+ return speech.cpu()
36
+
37
+
38
+ def speech_to_speech_translation(audio):
39
+ translated_text = translate(audio)
40
+ synthesised_speech = synthesise(translated_text)
41
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
42
+ return 16000, synthesised_speech
43
+
44
+
45
+ title = "Cascaded STST"
46
+ description = """
47
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
48
+ [Microsoft MMS Model] model for text-to-speech:
49
+ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
50
+ """
51
+
52
+ demo = gr.Blocks()
53
+
54
+ mic_translate = gr.Interface(
55
+ fn=speech_to_speech_translation,
56
+ inputs=gr.Audio(source="microphone", type="filepath"),
57
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
58
+ title=title,
59
+ description=description,
60
+ )
61
+
62
+ file_translate = gr.Interface(
63
+ fn=speech_to_speech_translation,
64
+ inputs=gr.Audio(source="upload", type="filepath"),
65
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
66
+ examples=[["./example.wav"]],
67
+ title=title,
68
+ description=description,
69
+ )
70
+
71
+ with demo:
72
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
73
+
74
+ demo.launch()