Spaces:
Runtime error
Runtime error
File size: 5,460 Bytes
3cecacc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import glob
import random
import torch
import librosa
import numpy as np
import utils
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
import scipy.signal as signal
import scipy.signal
from scipy.signal import butter, lfilter
import numpy as np
import scipy.signal as signal
import librosa
import torch
import random
from torch.utils.data import Dataset
import logging
import csv
import logging
import time
import numpy as np
import h5py
import torch
import torchaudio
from imblearn.over_sampling import RandomOverSampler
from networks import Wav2Vec2ForFakeMusic
from transformers import Wav2Vec2Processor
import torchaudio.transforms as T
class FakeMusicCapsDataset(Dataset):
def __init__(self, file_paths, labels, sr=16000, target_duration=10.0):
self.file_paths = file_paths
self.labels = labels
self.sr = sr
self.target_duration = target_duration
self.target_samples = int(target_duration * sr)
self.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base")
def highpass_filter(self, y, sr, cutoff=500, order=5):
if isinstance(sr, np.ndarray):
sr = np.mean(sr)
if not isinstance(sr, (int, float)):
raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}")
if sr <= 0:
raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.")
nyquist = 0.5 * sr
if cutoff <= 0 or cutoff >= nyquist:
print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...")
cutoff = max(10, min(cutoff, nyquist - 1))
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
y_filtered = signal.lfilter(b, a, y)
return y_filtered
def __len__(self):
return len(self.file_paths)
def __getitem__(self, idx):
audio_path = self.file_paths[idx]
label = self.labels[idx]
waveform, sr = torchaudio.load(audio_path)
waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=self.sr)(waveform)
waveform = waveform.squeeze(0)
if label == 0:
waveform = self.augment_audio(waveform, self.sr)
if label == 1:
waveform = self.highpass_filter(waveform, self.sr)
current_samples = waveform.shape[0]
if current_samples > self.target_samples:
start_idx = (current_samples - self.target_samples) // 2
waveform = waveform[start_idx:start_idx + self.target_samples]
elif current_samples < self.target_samples:
waveform = torch.nn.functional.pad(waveform, (0, self.target_samples - current_samples))
waveform = torch.tensor(waveform, dtype=torch.float32).unsqueeze(0)
label = torch.tensor(label, dtype=torch.long)
return waveform, label
def preprocess_audio(audio_path, target_sr=16000, target_duration=10.0):
waveform, sr = librosa.load(audio_path, sr=target_sr)
target_samples = int(target_duration * target_sr)
current_samples = len(waveform)
if current_samples > target_samples:
waveform = waveform[:target_samples]
elif current_samples < target_samples:
waveform = np.pad(waveform, (0, target_samples - current_samples))
waveform = torch.tensor(waveform).unsqueeze(0)
return waveform
DATASET_PATH = "/data/kym/AI_Music_Detection/audio/FakeMusicCaps"
SUNOCAPS_PATH = "/data/kym/Audio/SunoCaps" # Open Set 포함 데이터
real_files = glob.glob(os.path.join(DATASET_PATH, "real", "**", "*.wav"), recursive=True)
gen_files = glob.glob(os.path.join(DATASET_PATH, "generative", "**", "*.wav"), recursive=True)
open_real_files = real_files + glob.glob(os.path.join(SUNOCAPS_PATH, "real", "**", "*.wav"), recursive=True)
open_gen_files = gen_files + glob.glob(os.path.join(SUNOCAPS_PATH, "generative", "**", "*.wav"), recursive=True)
real_labels = [0] * len(real_files)
gen_labels = [1] * len(gen_files)
open_real_labels = [0] * len(open_real_files)
open_gen_labels = [1] * len(open_gen_files)
real_train, real_val, real_train_labels, real_val_labels = train_test_split(real_files, real_labels, test_size=0.2, random_state=42)
gen_train, gen_val, gen_train_labels, gen_val_labels = train_test_split(gen_files, gen_labels, test_size=0.2, random_state=42)
train_files = real_train + gen_train
train_labels = real_train_labels + gen_train_labels
val_files = real_val + gen_val
val_labels = real_val_labels + gen_val_labels
closed_test_files = real_files + gen_files
closed_test_labels = real_labels + gen_labels
open_test_files = open_real_files + open_gen_files
open_test_labels = open_real_labels + open_gen_labels
ros = RandomOverSampler(sampling_strategy='auto', random_state=42)
train_files_resampled, train_labels_resampled = ros.fit_resample(np.array(train_files).reshape(-1, 1), train_labels)
train_files = train_files_resampled.reshape(-1).tolist()
train_labels = train_labels_resampled
print(f"Train Original FAKE: {len(gen_train)}")
print(f"Train set (Oversampled) - REAL: {sum(1 for label in train_labels if label == 0)}, "
f"FAKE: {sum(1 for label in train_labels if label == 1)}, Total: {len(train_files)}")
print(f"Validation set - REAL: {len(real_val)}, FAKE: {len(gen_val)}, Total: {len(val_files)}")
|