File size: 6,189 Bytes
3cecacc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import os
import glob
import torch
import torchaudio
import librosa
import numpy as np
from torch.utils.data import Dataset
import torch
import torchaudio
from transformers import Wav2Vec2FeatureExtractor
import scipy.signal as signal
import scipy.signal
import random

class FakeMusicCapsDataset(Dataset):
    def __init__(self, file_paths, labels, sr=16000, target_duration=10.0):
        self.file_paths = file_paths
        self.labels = labels
        self.sr = sr
        self.target_samples = int(target_duration * sr)  # Fixed length: 10 seconds
        self.processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True)

    def __len__(self):
        return len(self.file_paths)
    
    def pre_emphasis(self, x, alpha=0.97):
        return np.append(x[0], x[1:] - alpha * x[:-1])
    
    def highpass_filter(self, y, sr, cutoff=1000, order=5): 
        if isinstance(sr, np.ndarray):
            sr = np.mean(sr)  
        if not isinstance(sr, (int, float)):
            raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}")
        if sr <= 0:
            raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.")
        nyquist = 0.5 * sr
        if cutoff <= 0 or cutoff >= nyquist:
            print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...")
            cutoff = max(10, min(cutoff, nyquist - 1))
        normal_cutoff = cutoff / nyquist
        b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
        y_filtered = signal.lfilter(b, a, y)
        return y_filtered
        
    # ์‹œ๊ฐ„ ์กฐ์ ˆ(Time Stretch), ์ดํ€„๋ผ์ด์ € ์กฐ์ •(EQ), ๋ฆฌ๋ฒ„๋ธŒ ์ถ”๊ฐ€
    def augment_audio(self, y, sr):
        if isinstance(y, torch.Tensor):
            y = y.numpy()  # Tensor โ†’ Numpy ๋ณ€ํ™˜

        if random.random() < 0.5:  # ์‹œ๊ฐ„ ์กฐ์ ˆ (Time Stretch)
            rate = random.uniform(0.8, 1.2)
            y = librosa.effects.time_stretch(y=y, rate=rate)

        if random.random() < 0.5:  # ํ”ผ์น˜ ์‹œํ”„ํŠธ (Pitch Shift)
            n_steps = random.randint(-2, 2)
            y = librosa.effects.pitch_shift(y=y, sr=sr, n_steps=n_steps) 

        if random.random() < 0.5:  # ํ™”์ดํŠธ ๋…ธ์ด์ฆˆ ์ถ”๊ฐ€ (White Noise Addition)
            noise_level = np.random.uniform(0.001, 0.005)
            y = y + np.random.normal(0, noise_level, y.shape)


        return torch.tensor(y, dtype=torch.float32)  # ๋‹ค์‹œ Tensor๋กœ ๋ณ€ํ™˜
    
    def __getitem__(self, idx):
        audio_path = self.file_paths[idx]
        label = self.labels[idx]

        waveform, sr = torchaudio.load(audio_path)

        target_sr = self.processor.sampling_rate  

        if sr != target_sr:
            resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)
            waveform = resampler(waveform)

        waveform = waveform.mean(dim=0).squeeze(0) 
        if label == 0:
            waveform = self.augment_audio(waveform, self.sr)
        if label == 1:
            waveform = self.highpass_filter(waveform, self.sr)
            # waveform = self.pre_emphasis(waveform)
            waveform = self.augment_audio(waveform, self.sr)
        # if label == 1:
        #     waveform = self.pre_emphasis(waveform)
        #     waveform = torch.tensor(waveform, dtype=torch.float32)


        current_samples = waveform.shape[0]
        if current_samples > self.target_samples:
            waveform = waveform[:self.target_samples]  # Truncate
        elif current_samples < self.target_samples:
            pad_length = self.target_samples - current_samples
            waveform = torch.nn.functional.pad(waveform, (0, pad_length))  # Pad

        if isinstance(waveform, torch.Tensor):
            waveform = waveform.numpy()  # Tensor์ผ ๊ฒฝ์šฐ์—๋งŒ ๋ณ€ํ™˜
        print(waveform.shape)
        inputs = self.processor(waveform, sampling_rate=target_sr, return_tensors="pt", padding=True)
        print(inputs["input_values"].shape)

        return inputs["input_values"].squeeze(0), torch.tensor(label, dtype=torch.long)  # [1, time] โ†’ [time]

    @staticmethod
    def collate_fn(batch, target_samples=16000 * 10):

        inputs, labels = zip(*batch)  # Unzip batch

        processed_inputs = []
        for waveform in inputs:
            current_samples = waveform.shape[0]

            if current_samples > target_samples:
                start_idx = (current_samples - target_samples) // 2
                cropped_waveform = waveform[start_idx:start_idx + target_samples]
            else:
                pad_length = target_samples - current_samples
                cropped_waveform = torch.nn.functional.pad(waveform, (0, pad_length))

            processed_inputs.append(cropped_waveform)

        processed_inputs = torch.stack(processed_inputs)  # [batch, target_samples]
        labels = torch.tensor(labels, dtype=torch.long)  # [batch]

        return processed_inputs, labels
    
def preprocess_audio(audio_path, target_sr=16000, max_length=160000):
    """
    ์˜ค๋””์˜ค๋ฅผ ๋ชจ๋ธ ์ž…๋ ฅ์— ๋งž๊ฒŒ ๋ณ€ํ™˜
    - target_sr: 16kHz๋กœ ๋ณ€ํ™˜
    - max_length: ์ตœ๋Œ€ ๊ธธ์ด 160000 (10์ดˆ)
    """
    waveform, sr = torchaudio.load(audio_path)

    # Resample if needed
    if sr != target_sr:
        waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(waveform)

    # Convert to mono
    waveform = waveform.mean(dim=0).unsqueeze(0)  # (1, sequence_length)

    current_samples = waveform.shape[1]
    if current_samples > max_length:
        start_idx = (current_samples - max_length) // 2
        waveform = waveform[:, start_idx:start_idx + max_length]
    elif current_samples < max_length:
        pad_length = max_length - current_samples
        waveform = torch.nn.functional.pad(waveform, (0, pad_length))

    return waveform


def collect_files(base_path):
    real_files = glob.glob(os.path.join(base_path, "real", "**", "*.wav"), recursive=True)
    gen_files = glob.glob(os.path.join(base_path, "generative", "**", "*.wav"), recursive=True)
    real_labels = [0] * len(real_files)
    gen_labels = [1] * len(gen_files)
    return real_files + gen_files, real_labels + gen_labels