Spaces:
Runtime error
Runtime error
File size: 10,106 Bytes
3cecacc 5b13050 3cecacc d4ac163 3cecacc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from beat_this.inference import File2Beats
import torchaudio
import torch
from pathlib import Path
import numpy as np
from collections import Counter
import os
import argparse
from tqdm import tqdm
import concurrent.futures
def get_segments_from_wav(wav_path, device="cuda"):
"""์ค๋์ค ํ์ผ์์ ๋นํธ์ ๋ค์ด๋นํธ๋ฅผ ์ถ์ถํฉ๋๋ค."""
#try:
file2beats = File2Beats(checkpoint_path="final0", device="cuda", dbn=False)
all_models = ["final0", "final1", "final2", "small0", "small1", "small2","single_final0", "single_final1", "single_final2"]
beats, downbeats = file2beats(wav_path)
if len(downbeats)==0: # downbeats๋ฅผ ๊ทธ๋ฅ 0 2 4..๋ก ๋ฃ์ด์ฃผ์. ์์
๊ธธ์ด์ ๋ง๊ฒ
waveform, sample_rate = torchaudio.load(wav_path)
duration = waveform.size(1) / sample_rate
downbeats = np.arange(0, duration, 2)
return beats, downbeats
#except Exception as e:
# print(f"Error extracting beats from {wav_path}: {str(e)}")
# return None, None
def find_optimal_segment_length(downbeats, round_decimal=1, bar_length = 4):
"""๋ค์ด๋นํธ ๊ฐ๊ฒฉ๋ค์ ๋ถํฌ๋ฅผ ๋ถ์ํ์ฌ ์ต์ ์ 4๋ง๋ ๊ธธ์ด์ ์ ์ ๋ ๋ค์ด๋นํธ ์์น๋ค์ ๋ฐํํฉ๋๋ค."""
if len(downbeats) < 2:
return 10.0, downbeats # ๊ธฐ๋ณธ 10์ด ๊ธธ์ด ๋ฐํ
# ์ฐ์๋ downbeat ๊ฐ์ ๊ฐ๊ฒฉ ๊ณ์ฐ
intervals = np.diff(downbeats)
rounded_intervals = np.round(intervals, round_decimal)
# ๊ฐ์ฅ ํํ ๊ฐ๊ฒฉ ์ฐพ๊ธฐ (1๋ง๋ ๊ธธ์ด)
interval_counter = Counter(rounded_intervals)
most_common_interval = interval_counter.most_common(1)[0][0]
# ์ ์ ๋ downbeat ์์น ์ฐพ๊ธฐ
cleaned_downbeats = [downbeats[0]] # ์ฒซ ๋ฒ์งธ ์์น๋ ํญ์ ํฌํจ
for i in range(1, len(downbeats)):
interval = rounded_intervals[i-1]
# ํ์ฌ ๊ฐ๊ฒฉ์ด ๊ฐ์ฅ ํํ ๊ฐ๊ฒฉ๊ณผ ๋น์ทํ์ง ํ์ธ (10% ์ค์ฐจ ํ์ฉ)
if abs(interval - most_common_interval) <= most_common_interval * 0.1:
cleaned_downbeats.append(downbeats[i])
return float(most_common_interval * bar_length), np.array(cleaned_downbeats)
def process_audio_file(audio_file, output_dir, temp_dir, device="cuda"):
"""๋จ์ผ ์ค๋์ค ํ์ผ์ ์ฒ๋ฆฌํ๊ณ ์ธ๊ทธ๋จผํธ๋ฅผ ์ถ์ถํฉ๋๋ค."""
try:
output_dir = Path(output_dir) # output_dir์ Path ๊ฐ์ฒด๋ก ๋ณํ
beats, downbeats = get_segments_from_wav(str(audio_file), device=device)
for bar_length in [1,2,3]:
# ๋ฌธ์์ด๋ก ๋ณํ ํ "segments_wav"๋ฅผ "segments_wav_์ซ์"๋ก ๋์ฒด
dir_str = str(output_dir)
if "segments_wav" in dir_str:
new_dir_str = dir_str.replace("segments_wav", f"segments_wav_{bar_length}")
base_dir = Path(new_dir_str)
else:
# segments_wav๊ฐ ์๋ ๊ฒฝ์ฐ ์ฒ๋ฆฌ
base_dir = output_dir.parent / f"{output_dir.name}_{bar_length}"
file_seg_dir = base_dir / audio_file.stem
file_seg_dir.mkdir(exist_ok=True, parents=True)
# ๋นํธ ์ ๋ณด ์ถ์ถ
if beats is None or downbeats is None or len(downbeats) == 0:
print(f"No beat information extracted for {audio_file.name}, skipping...")
return 0
# ์ต์ ์ ์ธ๊ทธ๋จผํธ ๊ธธ์ด์ ์ ์ ๋ ๋ค์ด๋นํธ ์ฐพ๊ธฐ
optimal_length, cleaned_downbeats = find_optimal_segment_length(downbeats, bar_length=bar_length)
# ์ค๋์ค ๋ก๋
waveform, sample_rate = torchaudio.load(str(audio_file))
if waveform.size(0) > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
total_duration = waveform.size(1) / sample_rate
segments_count = 0
# ๊ฐ ๋ค์ด๋นํธ์์ ์์ํ๋ ์ธ๊ทธ๋จผํธ ์์ฑ
for i, start_time in enumerate(cleaned_downbeats):
end_time = start_time + optimal_length
# ๋ง์ง๋ง ์ธ๊ทธ๋จผํธ๊ฐ ํ์ผ ๊ธธ์ด๋ฅผ ์ด๊ณผํ๋ฉด ๊ฑด๋๋ฐ๊ธฐ
if end_time > total_duration:
continue
start_sample = int(start_time * sample_rate)
end_sample = int(end_time * sample_rate)
# ์ธ๊ทธ๋จผํธ ์ถ์ถ ๋ฐ ์ ์ฅ
segment = waveform[:, start_sample:end_sample]
save_path = file_seg_dir / f"segment_{i}.wav"
torchaudio.save(str(save_path), segment, sample_rate)
segments_count += 1
# ์์ ๋นํธ ์ ๋ณด ์ ์ฅ (ํ์์)
if temp_dir:
segments_data = {'beat': beats, 'downbeat': downbeats}
temp_path = temp_dir / f"{audio_file.stem}_segments.npy"
np.save(str(temp_path), segments_data)
return segments_count
except Exception as e:
print(f"Error processing {audio_file.name}: {str(e)}")
return 0
def segment_dataset(base_dir, output_base_dir, temp_dir=None, num_workers=4, device="cuda"):
"""ISMIR2025 ๋ฐ์ดํฐ์
์ full_length ํด๋์์ ์ธ๊ทธ๋จผํธ๋ฅผ ์ถ์ถํฉ๋๋ค."""
base_path = Path(base_dir)
output_base_path = Path(output_base_dir)
# ์ฒ๋ฆฌ ํต๊ณ
stats = {
"processed_files": 0,
"extracted_segments": 0,
"failed_files": 0
}
# ์์ ๋๋ ํ ๋ฆฌ ์์ฑ (๋นํธ ์ ๋ณด ์ ์ฅ์ฉ)
if temp_dir:
temp_dir = Path(temp_dir)
temp_dir.mkdir(exist_ok=True)
# Real๊ณผ Fake ์ค๋์ค ๋ชจ๋ ์ฒ๋ฆฌ
for label in ["real", "fake"]:
for split in ["train", "valid", "test"]:
input_dir = base_path / label / split
output_dir = output_base_path / label / split
if not input_dir.exists():
print(f"Directory not found: {input_dir}")
continue
print(f"Processing {label}/{split} files...")
audio_files = list(input_dir.glob("*.wav")) + list(input_dir.glob("*.mp3"))
if not audio_files:
print(f"No audio files found in {input_dir}")
continue
# ๋ณ๋ ฌ ์ฒ๋ฆฌ ์ค์
if num_workers > 1:
with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
future_to_file = {
executor.submit(process_audio_file, file, output_dir, temp_dir, device): file
for file in audio_files
}
for future in tqdm(concurrent.futures.as_completed(future_to_file), total=len(audio_files)):
file = future_to_file[future]
try:
segments_count = future.result()
if segments_count > 0:
stats["processed_files"] += 1
stats["extracted_segments"] += segments_count
else:
stats["failed_files"] += 1
except Exception as e:
print(f"Error processing {file.name}: {str(e)}")
stats["failed_files"] += 1
else:
# ์ง๋ ฌ ์ฒ๋ฆฌ
for file in tqdm(audio_files):
segments_count = process_audio_file(file, output_dir, temp_dir, device)
if segments_count > 0:
stats["processed_files"] += 1
stats["extracted_segments"] += segments_count
else:
stats["failed_files"] += 1
# ์ต์ข
ํต๊ณ ๋ณด๊ณ
print("\n=== Segmentation Summary ===")
print(f"Successfully processed files: {stats['processed_files']}")
print(f"Failed files: {stats['failed_files']}")
print(f"Total extracted segments: {stats['extracted_segments']}")
print(f"Average segments per file: {stats['extracted_segments'] / max(1, stats['processed_files']):.2f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Extract segments from audio files in ISMIR2025 dataset")
parser.add_argument("--input", type=str, default="/data/datasets/ISMIR2025/full_length_audio",
help="Input directory with full_length audio files")
parser.add_argument("--output", type=str, default="/data/datasets/ISMIR2025/segments_wav",
help="Output directory for segments")
parser.add_argument("--temp", type=str, default=None,
help="Temporary directory for beat information (optional)")
parser.add_argument("--workers", type=int, default=4,
help="Number of parallel workers")
parser.add_argument("--device", type=str, default="cuda",
help="Device for beat extraction (cuda or cpu)")
args = parser.parse_args()
# ๋๋ ํ ๋ฆฌ ์ ํจ์ฑ ๊ฒ์ฌ
input_path = Path(args.input)
if not input_path.exists():
print(f"Input directory not found: {args.input}")
# ๋ค๋ฅธ ๊ฐ๋ฅํ ์์น ํ์ธ
alternatives = [
"/data/datasets/ISMIR2025/full_length",
"/data/ISMIR2025/full_length_audio",
"/data/ISMIR2025/full_length"
]
for alt_path in alternatives:
if os.path.exists(alt_path):
print(f"Found alternative input path: {alt_path}")
args.input = alt_path
break
else:
print("No valid input directory found.")
exit(1)
# ์ธ๊ทธ๋จผํธ ์ถ์ถ ์คํ
segment_dataset(
base_dir=args.input,
output_base_dir=args.output,
temp_dir=args.temp,
num_workers=args.workers,
device=args.device
) |