Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import torch | |
import torchaudio | |
import librosa | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from torch.utils.data import Dataset | |
from imblearn.over_sampling import RandomOverSampler | |
from transformers import Wav2Vec2Processor | |
import torch | |
import torchaudio | |
from torch.nn.utils.rnn import pad_sequence | |
from transformers import Wav2Vec2FeatureExtractor | |
import scipy.signal as signal | |
import scipy.signal | |
# class FakeMusicCapsDataset(Dataset): | |
# def __init__(self, file_paths, labels, sr=16000, target_duration=10.0): | |
# self.file_paths = file_paths | |
# self.labels = labels | |
# self.sr = sr | |
# self.target_samples = int(target_duration * sr) # Fixed length: 5 seconds | |
# def __len__(self): | |
# return len(self.file_paths) | |
# def __getitem__(self, idx): | |
# audio_path = self.file_paths[idx] | |
# label = self.labels[idx] | |
# waveform, sr = torchaudio.load(audio_path) | |
# waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=self.sr)(waveform) | |
# waveform = waveform.mean(dim=0) # Convert to mono | |
# waveform = waveform.squeeze(0) | |
# current_samples = waveform.shape[0] | |
# # **Ensure waveform is exactly `target_samples` long** | |
# if current_samples > self.target_samples: | |
# waveform = waveform[:self.target_samples] # Truncate if too long | |
# elif current_samples < self.target_samples: | |
# pad_length = self.target_samples - current_samples | |
# waveform = torch.nn.functional.pad(waveform, (0, pad_length)) # Pad if too short | |
# return waveform.unsqueeze(0), torch.tensor(label, dtype=torch.long) # Ensure 2D shape (1, target_samples) | |
class FakeMusicCapsDataset(Dataset): | |
def __init__(self, file_paths, labels, sr=16000, target_duration=10.0): | |
self.file_paths = file_paths | |
self.labels = labels | |
self.sr = sr | |
self.target_samples = int(target_duration * sr) # Fixed length: 10 seconds | |
self.processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-95M", trust_remote_code=True) | |
def __len__(self): | |
return len(self.file_paths) | |
def highpass_filter(self, y, sr, cutoff=500, order=5): | |
if isinstance(sr, np.ndarray): | |
# print(f"[ERROR] sr is an array, taking mean value. Original sr: {sr}") | |
sr = np.mean(sr) | |
if not isinstance(sr, (int, float)): | |
raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}") | |
# print(f"[DEBUG] Highpass filter using sr={sr}, cutoff={cutoff}") | |
if sr <= 0: | |
raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.") | |
nyquist = 0.5 * sr | |
# print(f"[DEBUG] Nyquist frequency={nyquist}") | |
if cutoff <= 0 or cutoff >= nyquist: | |
print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...") | |
cutoff = max(10, min(cutoff, nyquist - 1)) | |
normal_cutoff = cutoff / nyquist | |
# print(f"[DEBUG] Adjusted cutoff={cutoff}, normal_cutoff={normal_cutoff}") | |
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) | |
y_filtered = signal.lfilter(b, a, y) | |
return y_filtered | |
def __getitem__(self, idx): | |
audio_path = self.file_paths[idx] | |
label = self.labels[idx] | |
waveform, sr = torchaudio.load(audio_path) | |
target_sr = self.processor.sampling_rate | |
if sr != target_sr: | |
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr) | |
waveform = resampler(waveform) | |
waveform = waveform.mean(dim=0).squeeze(0) # [Time] | |
if label == 1: | |
waveform = self.highpass_filter(waveform, self.sr) | |
current_samples = waveform.shape[0] | |
if current_samples > self.target_samples: | |
waveform = waveform[:self.target_samples] # Truncate | |
elif current_samples < self.target_samples: | |
pad_length = self.target_samples - current_samples | |
waveform = torch.nn.functional.pad(waveform, (0, pad_length)) # Pad | |
if isinstance(waveform, torch.Tensor): | |
waveform = waveform.numpy() # Tensor์ผ ๊ฒฝ์ฐ์๋ง ๋ณํ | |
inputs = self.processor(waveform, sampling_rate=target_sr, return_tensors="pt", padding=True) | |
return inputs["input_values"].squeeze(0), torch.tensor(label, dtype=torch.long) # [1, time] โ [time] | |
def collate_fn(batch, target_samples=16000 * 10): | |
inputs, labels = zip(*batch) # Unzip batch | |
processed_inputs = [] | |
for waveform in inputs: | |
current_samples = waveform.shape[0] | |
if current_samples > target_samples: | |
start_idx = (current_samples - target_samples) // 2 | |
cropped_waveform = waveform[start_idx:start_idx + target_samples] | |
else: | |
pad_length = target_samples - current_samples | |
cropped_waveform = torch.nn.functional.pad(waveform, (0, pad_length)) | |
processed_inputs.append(cropped_waveform) | |
processed_inputs = torch.stack(processed_inputs) # [batch, target_samples] | |
labels = torch.tensor(labels, dtype=torch.long) # [batch] | |
return processed_inputs, labels | |
def preprocess_audio(audio_path, target_sr=16000, max_length=160000): | |
""" | |
์ค๋์ค๋ฅผ ๋ชจ๋ธ ์ ๋ ฅ์ ๋ง๊ฒ ๋ณํ | |
- target_sr: 16kHz๋ก ๋ณํ | |
- max_length: ์ต๋ ๊ธธ์ด 160000 (10์ด) | |
""" | |
waveform, sr = torchaudio.load(audio_path) | |
# Resample if needed | |
if sr != target_sr: | |
waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(waveform) | |
# Convert to mono | |
waveform = waveform.mean(dim=0).unsqueeze(0) # (1, sequence_length) | |
current_samples = waveform.shape[1] | |
if current_samples > max_length: | |
start_idx = (current_samples - max_length) // 2 | |
waveform = waveform[:, start_idx:start_idx + max_length] | |
elif current_samples < max_length: | |
pad_length = max_length - current_samples | |
waveform = torch.nn.functional.pad(waveform, (0, pad_length)) | |
return waveform | |
DATASET_PATH = "/data/kym/AI_Music_Detection/audio/FakeMusicCaps" | |
SUNOCAPS_PATH = "/data/kym/Audio/SunoCaps" # Open Set ํฌํจ ๋ฐ์ดํฐ | |
# Closed Test: FakeMusicCaps ๋ฐ์ดํฐ์ ์ฌ์ฉ | |
real_files = glob.glob(os.path.join(DATASET_PATH, "real", "**", "*.wav"), recursive=True) | |
gen_files = glob.glob(os.path.join(DATASET_PATH, "generative", "**", "*.wav"), recursive=True) | |
# Open Set Test: SUNOCAPS_PATH ๋ฐ์ดํฐ ํฌํจ | |
open_real_files = real_files + glob.glob(os.path.join(SUNOCAPS_PATH, "real", "**", "*.wav"), recursive=True) | |
open_gen_files = gen_files + glob.glob(os.path.join(SUNOCAPS_PATH, "generative", "**", "*.wav"), recursive=True) | |
real_labels = [0] * len(real_files) | |
gen_labels = [1] * len(gen_files) | |
open_real_labels = [0] * len(open_real_files) | |
open_gen_labels = [1] * len(open_gen_files) | |
# Closed Train, Val | |
real_train, real_val, real_train_labels, real_val_labels = train_test_split(real_files, real_labels, test_size=0.2, random_state=42) | |
gen_train, gen_val, gen_train_labels, gen_val_labels = train_test_split(gen_files, gen_labels, test_size=0.2, random_state=42) | |
train_files = real_train + gen_train | |
train_labels = real_train_labels + gen_train_labels | |
val_files = real_val + gen_val | |
val_labels = real_val_labels + gen_val_labels | |
# Closed Set Test์ฉ ๋ฐ์ดํฐ์ | |
closed_test_files = real_files + gen_files | |
closed_test_labels = real_labels + gen_labels | |
# Open Set Test์ฉ ๋ฐ์ดํฐ์ | |
open_test_files = open_real_files + open_gen_files | |
open_test_labels = open_real_labels + open_gen_labels | |
# Oversampling ์ ์ฉ | |
ros = RandomOverSampler(sampling_strategy='auto', random_state=42) | |
train_files_resampled, train_labels_resampled = ros.fit_resample(np.array(train_files).reshape(-1, 1), train_labels) | |
train_files = train_files_resampled.reshape(-1).tolist() | |
train_labels = train_labels_resampled | |
print(f"๐ Train Original FAKE: {len(gen_train)}") | |
print(f"๐ Train set (Oversampled) - REAL: {sum(1 for label in train_labels if label == 0)}, " | |
f"FAKE: {sum(1 for label in train_labels if label == 1)}, Total: {len(train_files)}") | |
print(f"๐ Validation set - REAL: {len(real_val)}, FAKE: {len(gen_val)}, Total: {len(val_files)}") | |