Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import torch | |
import torchaudio | |
import librosa | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from torch.utils.data import Dataset | |
from imblearn.over_sampling import RandomOverSampler | |
from transformers import Wav2Vec2Processor | |
import torch | |
import torchaudio | |
from torch.nn.utils.rnn import pad_sequence | |
import scipy.signal as signal | |
import random | |
class FakeMusicCapsDataset(Dataset): | |
def __init__(self, file_paths, labels, sr=16000, target_duration=10.0, augment=True): | |
self.file_paths = file_paths | |
self.labels = labels | |
self.sr = sr | |
self.target_samples = int(target_duration * sr) | |
self.augment = augment | |
def __len__(self): | |
return len(self.file_paths) | |
def augment_audio(self, y, sr): | |
if isinstance(y, torch.Tensor): | |
y = y.numpy() | |
if random.random() < 0.5: | |
rate = random.uniform(0.8, 1.2) | |
y = librosa.effects.time_stretch(y=y, rate=rate) | |
if random.random() < 0.5: | |
n_steps = random.randint(-2, 2) | |
y = librosa.effects.pitch_shift(y=y, sr=sr, n_steps=n_steps) | |
if random.random() < 0.5: | |
noise_level = np.random.uniform(0.001, 0.005) | |
y = y + np.random.normal(0, noise_level, y.shape) | |
if random.random() < 0.5: | |
gain = np.random.uniform(0.9, 1.1) | |
y = y * gain | |
return torch.tensor(y, dtype=torch.float32) | |
def __getitem__(self, idx): | |
audio_path = self.file_paths[idx] | |
label = self.labels[idx] | |
waveform, sr = torchaudio.load(audio_path) | |
waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=self.sr)(waveform) | |
waveform = waveform.mean(dim=0) | |
current_samples = waveform.shape[0] | |
if label == 0: | |
waveform = self.augment_audio(waveform, self.sr) | |
if label == 1: | |
waveform = self.highpass_filter(waveform, self.sr) | |
waveform = self.augment_audio(waveform, self.sr) | |
if current_samples > self.target_samples: | |
waveform = waveform[:self.target_samples] | |
elif current_samples < self.target_samples: | |
pad_length = self.target_samples - current_samples | |
waveform = torch.nn.functional.pad(waveform, (0, pad_length)) | |
# waveform = waveform.squeeze(0) | |
if isinstance(waveform, np.ndarray): | |
waveform = torch.tensor(waveform, dtype=torch.float32) | |
return waveform.unsqueeze(0), torch.tensor(label, dtype=torch.long) | |
def highpass_filter(self, y, sr, cutoff=500, order=5): | |
if isinstance(sr, np.ndarray): | |
sr = np.mean(sr) | |
if not isinstance(sr, (int, float)): | |
raise ValueError(f"[ERROR] sr must be a number, but got {type(sr)}: {sr}") | |
if sr <= 0: | |
raise ValueError(f"Invalid sample rate: {sr}. It must be greater than 0.") | |
nyquist = 0.5 * sr | |
if cutoff <= 0 or cutoff >= nyquist: | |
print(f"[WARNING] Invalid cutoff frequency {cutoff}, adjusting...") | |
cutoff = max(10, min(cutoff, nyquist - 1)) | |
normal_cutoff = cutoff / nyquist | |
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False) | |
y_filtered = signal.lfilter(b, a, y) | |
return y_filtered | |
def preprocess_audio(audio_path, target_sr=16000, max_length=160000): | |
waveform, sr = torchaudio.load(audio_path) | |
if sr != target_sr: | |
waveform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)(waveform) | |
waveform = waveform.mean(dim=0).unsqueeze(0) | |
current_samples = waveform.shape[1] | |
if current_samples > max_length: | |
start_idx = (current_samples - max_length) // 2 | |
waveform = waveform[:, start_idx:start_idx + max_length] | |
elif current_samples < max_length: | |
pad_length = max_length - current_samples | |
waveform = torch.nn.functional.pad(waveform, (0, pad_length)) | |
return waveform | |
DATASET_PATH = "/data/kym/AI_Music_Detection/audio/FakeMusicCaps" | |
SUNOCAPS_PATH = "/data/kym/Audio/SunoCaps" # Open Set 포함 데이터 | |
real_files = glob.glob(os.path.join(DATASET_PATH, "real", "**", "*.wav"), recursive=True) | |
gen_files = glob.glob(os.path.join(DATASET_PATH, "generative", "**", "*.wav"), recursive=True) | |
open_real_files = real_files + glob.glob(os.path.join(SUNOCAPS_PATH, "real", "**", "*.wav"), recursive=True) | |
open_gen_files = gen_files + glob.glob(os.path.join(SUNOCAPS_PATH, "generative", "**", "*.wav"), recursive=True) | |
real_labels = [0] * len(real_files) | |
gen_labels = [1] * len(gen_files) | |
open_real_labels = [0] * len(open_real_files) | |
open_gen_labels = [1] * len(open_gen_files) | |
real_train, real_val, real_train_labels, real_val_labels = train_test_split(real_files, real_labels, test_size=0.2, random_state=42) | |
gen_train, gen_val, gen_train_labels, gen_val_labels = train_test_split(gen_files, gen_labels, test_size=0.2, random_state=42) | |
train_files = real_train + gen_train | |
train_labels = real_train_labels + gen_train_labels | |
val_files = real_val + gen_val | |
val_labels = real_val_labels + gen_val_labels | |
closed_test_files = real_files + gen_files | |
closed_test_labels = real_labels + gen_labels | |
open_test_files = open_real_files + open_gen_files | |
open_test_labels = open_real_labels + open_gen_labels | |
ros = RandomOverSampler(sampling_strategy='auto', random_state=42) | |
train_files_resampled, train_labels_resampled = ros.fit_resample(np.array(train_files).reshape(-1, 1), train_labels) | |
train_files = train_files_resampled.reshape(-1).tolist() | |
train_labels = train_labels_resampled | |
print(f"Train Original FAKE: {len(gen_train)}") | |
print(f"Train set (Oversampled) - REAL: {sum(1 for label in train_labels if label == 0)}, " | |
f"FAKE: {sum(1 for label in train_labels if label == 1)}, Total: {len(train_files)}") | |
print(f"Validation set - REAL: {len(real_val)}, FAKE: {len(gen_val)}, Total: {len(val_files)}") | |