Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from transformers import Data2VecAudioModel, Wav2Vec2Processor | |
class Music2VecClassifier(nn.Module): | |
def __init__(self, num_classes=2, freeze_feature_extractor=True): | |
super(Music2VecClassifier, self).__init__() | |
self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") | |
self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") | |
if freeze_feature_extractor: | |
for param in self.music2vec.parameters(): | |
param.requires_grad = False | |
# Conv1d for learnable weighted average across layers | |
self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) | |
# Classification head | |
self.classifier = nn.Sequential( | |
nn.Linear(self.music2vec.config.hidden_size, 256), | |
nn.ReLU(), | |
nn.Dropout(0.3), | |
nn.Linear(256, num_classes) | |
) | |
def forward(self, input_values): | |
input_values = input_values.squeeze(1) # Ensure shape [batch, time] | |
with torch.no_grad(): | |
outputs = self.music2vec(input_values, output_hidden_states=True) | |
hidden_states = torch.stack(outputs.hidden_states) | |
time_reduced = hidden_states.mean(dim=2) | |
time_reduced = time_reduced.permute(1, 0, 2) | |
weighted_avg = self.conv1d(time_reduced).squeeze(1) | |
return self.classifier(weighted_avg), weighted_avg | |
def unfreeze_feature_extractor(self): | |
for param in self.music2vec.parameters(): | |
param.requires_grad = True | |
class Music2VecFeatureExtractor(nn.Module): | |
def __init__(self, freeze_feature_extractor=True): | |
super(Music2VecFeatureExtractor, self).__init__() | |
self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") | |
self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") | |
if freeze_feature_extractor: | |
for param in self.music2vec.parameters(): | |
param.requires_grad = False | |
# Conv1d for learnable weighted average across layers | |
self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) | |
def forward(self, input_values): | |
# input_values: [batch, time] | |
input_values = input_values.squeeze(1) | |
with torch.no_grad(): | |
outputs = self.music2vec(input_values, output_hidden_states=True) | |
hidden_states = torch.stack(outputs.hidden_states) # [num_layers, batch, time, hidden_dim] | |
time_reduced = hidden_states.mean(dim=2) # [num_layers, batch, hidden_dim] | |
time_reduced = time_reduced.permute(1, 0, 2) # [batch, num_layers, hidden_dim] | |
weighted_avg = self.conv1d(time_reduced).squeeze(1) # [batch, hidden_dim] | |
return weighted_avg | |
''' | |
music2vec+CCV | |
# ''' | |
# import torch | |
# import torch.nn as nn | |
# from transformers import Data2VecAudioModel, Wav2Vec2Processor | |
# import torch.nn.functional as F | |
# ### Music2Vec Feature Extractor (Pretrained Model) | |
# class Music2VecFeatureExtractor(nn.Module): | |
# def __init__(self, freeze_feature_extractor=True): | |
# super(Music2VecFeatureExtractor, self).__init__() | |
# self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") | |
# self.music2vec = Data2VecAudioModel.from_pretrained("m-a-p/music2vec-v1") | |
# if freeze_feature_extractor: | |
# for param in self.music2vec.parameters(): | |
# param.requires_grad = False | |
# # Conv1d for learnable weighted average across layers | |
# self.conv1d = nn.Conv1d(in_channels=13, out_channels=1, kernel_size=1) | |
# def forward(self, input_values): | |
# with torch.no_grad(): | |
# outputs = self.music2vec(input_values, output_hidden_states=True) | |
# hidden_states = torch.stack(outputs.hidden_states) # [13, batch, time, hidden_size] | |
# time_reduced = hidden_states.mean(dim=2) # 평균 풀링: [13, batch, hidden_size] | |
# time_reduced = time_reduced.permute(1, 0, 2) # [batch, 13, hidden_size] | |
# weighted_avg = self.conv1d(time_reduced).squeeze(1) # [batch, hidden_size] | |
# return weighted_avg # Extracted feature representation | |
# def unfreeze_feature_extractor(self): | |
# for param in self.music2vec.parameters(): | |
# param.requires_grad = True # Unfreeze for Fine-tuning | |
# ### CNN Feature Extractor for CCV | |
class CNNEncoder(nn.Module): | |
def __init__(self, embed_dim=512): | |
super(CNNEncoder, self).__init__() | |
self.conv_block = nn.Sequential( | |
nn.Conv2d(1, 16, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d((2,1)), # 기존 MaxPool2d(2)를 MaxPool2d((2,1))으로 변경 | |
nn.Conv2d(16, 32, kernel_size=3, padding=1), | |
nn.ReLU(), | |
nn.MaxPool2d((1,1)), # 추가된 MaxPool2d(1,1)로 크기 유지 | |
nn.AdaptiveAvgPool2d((4, 4)) # 최종 크기 조정 | |
) | |
self.projection = nn.Linear(32 * 4 * 4, embed_dim) | |
def forward(self, x): | |
# print(f"Input shape before CNNEncoder: {x.shape}") # 디버깅용 출력 | |
x = self.conv_block(x) | |
B, C, H, W = x.shape | |
x = x.view(B, -1) | |
x = self.projection(x) | |
return x | |
### Cross-Attention Module | |
class CrossAttentionLayer(nn.Module): | |
def __init__(self, embed_dim, num_heads): | |
super(CrossAttentionLayer, self).__init__() | |
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) | |
self.layer_norm = nn.LayerNorm(embed_dim) | |
self.feed_forward = nn.Sequential( | |
nn.Linear(embed_dim, embed_dim * 4), | |
nn.ReLU(), | |
nn.Linear(embed_dim * 4, embed_dim) | |
) | |
self.attention_weights = None | |
def forward(self, x, cross_input): | |
attn_output, attn_weights = self.multihead_attn(query=x, key=cross_input, value=cross_input) | |
self.attention_weights = attn_weights | |
x = self.layer_norm(x + attn_output) | |
feed_forward_output = self.feed_forward(x) | |
x = self.layer_norm(x + feed_forward_output) | |
return x | |
### Cross-Attention Transformer | |
class CrossAttentionViT(nn.Module): | |
def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2): | |
super(CrossAttentionViT, self).__init__() | |
self.cross_attention_layers = nn.ModuleList([ | |
CrossAttentionLayer(embed_dim, num_heads) for _ in range(num_layers) | |
]) | |
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads) | |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
self.classifier = nn.Sequential( | |
nn.LayerNorm(embed_dim), | |
nn.Linear(embed_dim, num_classes) | |
) | |
def forward(self, x, cross_attention_input): | |
self.attention_maps = [] | |
for layer in self.cross_attention_layers: | |
x = layer(x, cross_attention_input) | |
self.attention_maps.append(layer.attention_weights) | |
x = x.unsqueeze(1).permute(1, 0, 2) | |
x = self.transformer(x) | |
x = x.mean(dim=0) | |
x = self.classifier(x) | |
return x | |
### CCV Model (Final Classifier) | |
# class CCV(nn.Module): | |
# def __init__(self, embed_dim=512, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=True): | |
# super(CCV, self).__init__() | |
# self.music2vec_extractor = Music2VecClassifier(freeze_feature_extractor=freeze_feature_extractor) | |
# # CNN Encoder for Image Representation | |
# self.encoder = CNNEncoder(embed_dim=embed_dim) | |
# # Transformer with Cross-Attention | |
# self.decoder = CrossAttentionViT(embed_dim=embed_dim, num_heads=num_heads, num_layers=num_layers, num_classes=num_classes) | |
# def forward(self, x, cross_attention_input=None): | |
# x = self.music2vec_extractor(x) | |
# # print(f"After Music2VecExtractor: {x.shape}") # (batch, 2) 출력됨 | |
# # CNNEncoder가 기대하는 입력 크기 맞추기 | |
# x = x.unsqueeze(1).unsqueeze(-1) # (batch, 1, 2, 1) 형태로 변환 | |
# # print(f"Before CNNEncoder: {x.shape}") # CNN 입력 확인 | |
# x = self.encoder(x) | |
# if cross_attention_input is None: | |
# cross_attention_input = x | |
# x = self.decoder(x, cross_attention_input) | |
# return x | |
class CCV(nn.Module): | |
def __init__(self, embed_dim=768, num_heads=8, num_layers=6, num_classes=2, freeze_feature_extractor=True): | |
super(CCV, self).__init__() | |
self.feature_extractor = Music2VecFeatureExtractor(freeze_feature_extractor=freeze_feature_extractor) | |
# Cross-Attention Transformer | |
self.cross_attention_layers = nn.ModuleList([ | |
CrossAttentionLayer(embed_dim, num_heads) for _ in range(num_layers) | |
]) | |
# Transformer Encoder | |
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads) | |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
# Classification Head | |
self.classifier = nn.Sequential( | |
nn.LayerNorm(embed_dim), | |
nn.Linear(embed_dim, num_classes) | |
) | |
def forward(self, input_values): | |
# Extract feature embeddings | |
features = self.feature_extractor(input_values) # [batch, feature_dim] | |
# Average over layer dimension if necessary (여기서는 이미 [batch, hidden_dim]) | |
# Apply Cross-Attention Layers | |
for layer in self.cross_attention_layers: | |
features = layer(features.unsqueeze(1), features.unsqueeze(1)).squeeze(1) | |
# Transformer Encoding | |
encoded = self.transformer(features.unsqueeze(1)) | |
encoded = encoded.mean(dim=1) | |
# Classification Head | |
logits = self.classifier(encoded) | |
return logits | |
def get_attention_maps(self): | |
# 만약 CrossAttentionLayer의 attention_maps를 사용하고 싶다면 구현 | |
return None | |