import streamlit as st import pandas as pd from sklearn.ensemble import RandomForestClassifier import joblib def load_model(): # Load the pre-trained model model = joblib.load('weather_model.joblib') return model def predict_weather_conditions(model, input_data): # Make predictions on the input data predictions = model.predict(input_data) return predictions[0] def main(): # Load the pre-trained model model = load_model() # Add a title to your app st.title("Weather Prediction App") # Get user input temp_c = st.slider("Temperature in Celsius", min_value=-10.0, max_value=40.0, value=20.0) dew_point_temp_c = st.slider("Dew Point Temperature in Celsius", min_value=-10.0, max_value=30.0, value=15.0) rel_humidity = st.slider("Relative Humidity (%)", min_value=0, max_value=100, value=50) wind_speed_kmh = st.slider("Wind Speed in km/h", min_value=0, max_value=50, value=10) visibility_km = st.slider("Visibility in km", min_value=0.1, max_value=50.0, value=10.0) press_kpa = st.slider("Atmospheric Pressure in kPa", min_value=90.0, max_value=110.0, value=101.0) # Create a DataFrame with user input input_data = pd.DataFrame({ 'Temp_C': [temp_c], 'Dew Point Temp_C': [dew_point_temp_c], 'Rel Hum_%': [rel_humidity], 'Wind Speed_km/h': [wind_speed_kmh], 'Visibility_km': [visibility_km], 'Press_kPa': [press_kpa], }) # Make predictions if st.button("Predict Weather"): predicted_weather = predict_weather_conditions(model, input_data) st.success(f"Predicted Weather Condition: {predicted_weather}") if __name__ == '__main__': main()