nirajandhakal commited on
Commit
860bc61
·
verified ·
1 Parent(s): 453b19b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -66
app.py CHANGED
@@ -1,70 +1,85 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
6
 
 
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
-
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
22
 
 
 
23
  if randomize_seed:
24
  seed = random.randint(0, MAX_SEED)
25
-
26
  generator = torch.Generator().manual_seed(seed)
27
-
28
  image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
-
38
- return image
39
 
40
  examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
  ]
45
 
46
- css="""
 
 
 
 
47
  #col-container {
48
  margin: 0 auto;
49
  max-width: 520px;
50
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
  with gr.Blocks(css=css) as demo:
59
 
60
  with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
 
 
 
 
 
 
64
  """)
65
 
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -76,16 +91,8 @@ with gr.Blocks(css=css) as demo:
76
  run_button = gr.Button("Run", scale=0)
77
 
78
  result = gr.Image(label="Result", show_label=False)
79
-
80
  with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
-
89
  seed = gr.Slider(
90
  label="Seed",
91
  minimum=0,
@@ -93,54 +100,53 @@ with gr.Blocks(css=css) as demo:
93
  step=1,
94
  value=0,
95
  )
96
-
97
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
 
99
  with gr.Row():
100
-
101
  width = gr.Slider(
102
  label="Width",
103
  minimum=256,
104
  maximum=MAX_IMAGE_SIZE,
105
  step=32,
106
- value=512,
107
  )
108
-
109
  height = gr.Slider(
110
  label="Height",
111
  minimum=256,
112
  maximum=MAX_IMAGE_SIZE,
113
  step=32,
114
- value=512,
115
  )
116
 
117
  with gr.Row():
118
-
119
  guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
  step=0.1,
124
- value=0.0,
125
  )
126
-
127
  num_inference_steps = gr.Slider(
128
  label="Number of inference steps",
129
  minimum=1,
130
- maximum=12,
131
  step=1,
132
- value=2,
133
  )
134
 
135
  gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
 
 
 
138
  )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
 
144
  )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
8
 
9
+ dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
 
 
 
 
 
 
 
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
 
 
16
 
17
+ @spaces.GPU(duration=190)
18
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
19
  if randomize_seed:
20
  seed = random.randint(0, MAX_SEED)
 
21
  generator = torch.Generator().manual_seed(seed)
 
22
  image = pipe(
23
+ prompt=prompt,
24
+ width=width,
25
+ height=height,
26
+ num_inference_steps=num_inference_steps,
27
+ generator=generator,
28
+ guidance_scale=guidance_scale
29
+ ).images[0]
30
+ return image, seed
 
 
31
 
32
  examples = [
33
+ "a galaxy swirling with vibrant blue and purple hues",
34
+ "a futuristic cityscape under a dark sky",
35
+ "a serene forest with a magical glowing tree",
36
  ]
37
 
38
+ css = """
39
+ body {
40
+ background-color: #e0f7fa;
41
+ color: #005662;
42
+ }
43
  #col-container {
44
  margin: 0 auto;
45
  max-width: 520px;
46
  }
47
+ .gr-button {
48
+ background-color: #0288d1;
49
+ color: white;
50
+ border-radius: 8px;
51
+ }
52
+ .gr-button:hover {
53
+ background-color: #0277bd;
54
+ }
55
+ .gr-examples-card {
56
+ background-color: #ffffff;
57
+ border: 1px solid #0288d1;
58
+ border-radius: 12px;
59
+ padding: 16px;
60
+ margin-bottom: 12px;
61
+ }
62
+ .gr-examples-card:hover {
63
+ background-color: #e0f7fa;
64
+ border-color: #0277bd;
65
+ }
66
  """
67
 
 
 
 
 
 
68
  with gr.Blocks(css=css) as demo:
69
 
70
  with gr.Column(elem_id="col-container"):
71
+ gr.Markdown(f"""# FLUX.1 [dev]
72
+ 12B param rectified flow transformer guidance-distilled from FLUX.1 [pro]
73
+
74
+ <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
75
+ <div class="gr-examples-card">
76
+ <h3>View Model Details</h3>
77
+ <p>Explore more about this model on Hugging Face.</p>
78
+ </div>
79
+ </a>
80
  """)
81
 
82
  with gr.Row():
 
83
  prompt = gr.Text(
84
  label="Prompt",
85
  show_label=False,
 
91
  run_button = gr.Button("Run", scale=0)
92
 
93
  result = gr.Image(label="Result", show_label=False)
94
+
95
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
 
96
  seed = gr.Slider(
97
  label="Seed",
98
  minimum=0,
 
100
  step=1,
101
  value=0,
102
  )
 
103
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
104
 
105
  with gr.Row():
 
106
  width = gr.Slider(
107
  label="Width",
108
  minimum=256,
109
  maximum=MAX_IMAGE_SIZE,
110
  step=32,
111
+ value=1024,
112
  )
 
113
  height = gr.Slider(
114
  label="Height",
115
  minimum=256,
116
  maximum=MAX_IMAGE_SIZE,
117
  step=32,
118
+ value=1024,
119
  )
120
 
121
  with gr.Row():
 
122
  guidance_scale = gr.Slider(
123
+ label="Guidance Scale",
124
+ minimum=1,
125
+ maximum=15,
126
  step=0.1,
127
+ value=3.5,
128
  )
 
129
  num_inference_steps = gr.Slider(
130
  label="Number of inference steps",
131
  minimum=1,
132
+ maximum=50,
133
  step=1,
134
+ value=28,
135
  )
136
 
137
  gr.Examples(
138
+ examples=examples,
139
+ fn=infer,
140
+ inputs=[prompt],
141
+ outputs=[result, seed],
142
+ cache_examples="lazy"
143
  )
144
 
145
+ gr.on(
146
+ triggers=[run_button.click, prompt.submit],
147
+ fn=infer,
148
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
149
+ outputs=[result, seed]
150
  )
151
 
152
+ demo.launch()