Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,85 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
import torch
|
|
|
|
|
6 |
|
|
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
|
9 |
-
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE =
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
|
|
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
image = pipe(
|
29 |
-
prompt
|
30 |
-
|
31 |
-
|
32 |
-
num_inference_steps
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
return image
|
39 |
|
40 |
examples = [
|
41 |
-
"
|
42 |
-
"
|
43 |
-
"
|
44 |
]
|
45 |
|
46 |
-
css="""
|
|
|
|
|
|
|
|
|
47 |
#col-container {
|
48 |
margin: 0 auto;
|
49 |
max-width: 520px;
|
50 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(f"""
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
""")
|
65 |
|
66 |
with gr.Row():
|
67 |
-
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
@@ -76,16 +91,8 @@ with gr.Blocks(css=css) as demo:
|
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
|
78 |
result = gr.Image(label="Result", show_label=False)
|
79 |
-
|
80 |
with gr.Accordion("Advanced Settings", open=False):
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
-
)
|
88 |
-
|
89 |
seed = gr.Slider(
|
90 |
label="Seed",
|
91 |
minimum=0,
|
@@ -93,54 +100,53 @@ with gr.Blocks(css=css) as demo:
|
|
93 |
step=1,
|
94 |
value=0,
|
95 |
)
|
96 |
-
|
97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
|
99 |
with gr.Row():
|
100 |
-
|
101 |
width = gr.Slider(
|
102 |
label="Width",
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
step=32,
|
106 |
-
value=
|
107 |
)
|
108 |
-
|
109 |
height = gr.Slider(
|
110 |
label="Height",
|
111 |
minimum=256,
|
112 |
maximum=MAX_IMAGE_SIZE,
|
113 |
step=32,
|
114 |
-
value=
|
115 |
)
|
116 |
|
117 |
with gr.Row():
|
118 |
-
|
119 |
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance
|
121 |
-
minimum=
|
122 |
-
maximum=
|
123 |
step=0.1,
|
124 |
-
value=
|
125 |
)
|
126 |
-
|
127 |
num_inference_steps = gr.Slider(
|
128 |
label="Number of inference steps",
|
129 |
minimum=1,
|
130 |
-
maximum=
|
131 |
step=1,
|
132 |
-
value=
|
133 |
)
|
134 |
|
135 |
gr.Examples(
|
136 |
-
examples
|
137 |
-
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
144 |
)
|
145 |
|
146 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import spaces
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
8 |
|
9 |
+
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
16 |
|
17 |
+
@spaces.GPU(duration=190)
|
18 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
|
|
21 |
generator = torch.Generator().manual_seed(seed)
|
|
|
22 |
image = pipe(
|
23 |
+
prompt=prompt,
|
24 |
+
width=width,
|
25 |
+
height=height,
|
26 |
+
num_inference_steps=num_inference_steps,
|
27 |
+
generator=generator,
|
28 |
+
guidance_scale=guidance_scale
|
29 |
+
).images[0]
|
30 |
+
return image, seed
|
|
|
|
|
31 |
|
32 |
examples = [
|
33 |
+
"a galaxy swirling with vibrant blue and purple hues",
|
34 |
+
"a futuristic cityscape under a dark sky",
|
35 |
+
"a serene forest with a magical glowing tree",
|
36 |
]
|
37 |
|
38 |
+
css = """
|
39 |
+
body {
|
40 |
+
background-color: #e0f7fa;
|
41 |
+
color: #005662;
|
42 |
+
}
|
43 |
#col-container {
|
44 |
margin: 0 auto;
|
45 |
max-width: 520px;
|
46 |
}
|
47 |
+
.gr-button {
|
48 |
+
background-color: #0288d1;
|
49 |
+
color: white;
|
50 |
+
border-radius: 8px;
|
51 |
+
}
|
52 |
+
.gr-button:hover {
|
53 |
+
background-color: #0277bd;
|
54 |
+
}
|
55 |
+
.gr-examples-card {
|
56 |
+
background-color: #ffffff;
|
57 |
+
border: 1px solid #0288d1;
|
58 |
+
border-radius: 12px;
|
59 |
+
padding: 16px;
|
60 |
+
margin-bottom: 12px;
|
61 |
+
}
|
62 |
+
.gr-examples-card:hover {
|
63 |
+
background-color: #e0f7fa;
|
64 |
+
border-color: #0277bd;
|
65 |
+
}
|
66 |
"""
|
67 |
|
|
|
|
|
|
|
|
|
|
|
68 |
with gr.Blocks(css=css) as demo:
|
69 |
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
+
gr.Markdown(f"""# FLUX.1 [dev]
|
72 |
+
12B param rectified flow transformer guidance-distilled from FLUX.1 [pro]
|
73 |
+
|
74 |
+
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
|
75 |
+
<div class="gr-examples-card">
|
76 |
+
<h3>View Model Details</h3>
|
77 |
+
<p>Explore more about this model on Hugging Face.</p>
|
78 |
+
</div>
|
79 |
+
</a>
|
80 |
""")
|
81 |
|
82 |
with gr.Row():
|
|
|
83 |
prompt = gr.Text(
|
84 |
label="Prompt",
|
85 |
show_label=False,
|
|
|
91 |
run_button = gr.Button("Run", scale=0)
|
92 |
|
93 |
result = gr.Image(label="Result", show_label=False)
|
94 |
+
|
95 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
seed = gr.Slider(
|
97 |
label="Seed",
|
98 |
minimum=0,
|
|
|
100 |
step=1,
|
101 |
value=0,
|
102 |
)
|
|
|
103 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
104 |
|
105 |
with gr.Row():
|
|
|
106 |
width = gr.Slider(
|
107 |
label="Width",
|
108 |
minimum=256,
|
109 |
maximum=MAX_IMAGE_SIZE,
|
110 |
step=32,
|
111 |
+
value=1024,
|
112 |
)
|
|
|
113 |
height = gr.Slider(
|
114 |
label="Height",
|
115 |
minimum=256,
|
116 |
maximum=MAX_IMAGE_SIZE,
|
117 |
step=32,
|
118 |
+
value=1024,
|
119 |
)
|
120 |
|
121 |
with gr.Row():
|
|
|
122 |
guidance_scale = gr.Slider(
|
123 |
+
label="Guidance Scale",
|
124 |
+
minimum=1,
|
125 |
+
maximum=15,
|
126 |
step=0.1,
|
127 |
+
value=3.5,
|
128 |
)
|
|
|
129 |
num_inference_steps = gr.Slider(
|
130 |
label="Number of inference steps",
|
131 |
minimum=1,
|
132 |
+
maximum=50,
|
133 |
step=1,
|
134 |
+
value=28,
|
135 |
)
|
136 |
|
137 |
gr.Examples(
|
138 |
+
examples=examples,
|
139 |
+
fn=infer,
|
140 |
+
inputs=[prompt],
|
141 |
+
outputs=[result, seed],
|
142 |
+
cache_examples="lazy"
|
143 |
)
|
144 |
|
145 |
+
gr.on(
|
146 |
+
triggers=[run_button.click, prompt.submit],
|
147 |
+
fn=infer,
|
148 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
149 |
+
outputs=[result, seed]
|
150 |
)
|
151 |
|
152 |
+
demo.launch()
|