nirajandhakal commited on
Commit
c843051
·
verified ·
1 Parent(s): 70d6a28

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -146
app.py CHANGED
@@ -1,27 +1,27 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- import spaces
5
  import torch
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
- from PIL import Image
8
- import io
9
  import os
10
 
 
 
 
 
 
 
11
  dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
-
14
- # Set your Hugging Face API token
15
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
16
 
17
- # Load the diffusion pipeline with the Hugging Face API token
18
- pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device)
 
 
 
19
 
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 2048
22
-
23
- @spaces.GPU(duration=200)
24
- def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
  generator = torch.Generator().manual_seed(seed)
@@ -35,30 +35,15 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidan
35
  ).images[0]
36
  return image, seed
37
 
38
- def download_image(image, file_format):
39
- img_byte_arr = io.BytesIO()
40
- image.save(img_byte_arr, format=file_format)
41
- img_byte_arr = img_byte_arr.getvalue()
42
- return img_byte_arr
43
-
44
- examples = [
45
- "a galaxy swirling with vibrant blue and purple hues",
46
- "a futuristic cityscape under a dark sky",
47
- "a serene forest with a magical glowing tree",
48
- "a futuristic cityscape with sleek skyscrapers and flying cars",
49
- "a portrait of a smiling woman with a colorful floral crown",
50
- "a fantastical creature with the body of a dragon and the wings of a butterfly",
51
- ]
52
-
53
  css = """
54
  body {
55
  background-color: #f4faff;
56
  color: #005662;
57
  font-family: 'Poppins', sans-serif;
58
  }
59
- #col-container {
60
  margin: 0 auto;
61
- max-width: 100%;
62
  padding: 20px;
63
  }
64
  .gr-button {
@@ -70,135 +55,62 @@ body {
70
  .gr-button:hover {
71
  background-color: #0277bd;
72
  }
73
- .gr-examples-card {
74
- border: 1px solid #eeeeee;
75
  border-radius: 12px;
76
- padding: 16px;
77
- margin-bottom: 12px;
78
- }
79
- .gr-examples-card:hover {
80
- background-color: #f4faf2;
81
- border-color: #0277bd;
82
- color: #005662;
83
- }
84
- .gr-progress-bar, .gr-progress-bar-fill {
85
- background-color: #0288d1 !important;
86
- }
87
- .gr-slider, .gr-slider-track {
88
- background-color: #0288d1 !important;
89
- }
90
- .gr-slider-thumb {
91
- background-color: #005662 !important;
92
- }
93
- .gr-text-input, .gr-image {
94
- width: 100%;
95
- box-sizing: border-box;
96
- margin-bottom: 10px;
97
  }
98
  """
99
 
100
  with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
 
 
101
 
102
- with gr.Column(elem_id="col-container"):
103
- gr.Markdown(f"""# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
104
-
105
- <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
106
- <div class="gr-examples-card">
107
- <h3>View Model Details</h3>
108
- <p>Explore more about this model on Hugging Face.</p>
109
- </div>
110
- </a>
111
- """)
112
-
113
- with gr.Row():
114
  prompt = gr.Text(
115
  label="Prompt",
116
- show_label=False,
117
- max_lines=1,
118
- placeholder="Enter your prompt",
119
- container=False,
120
  )
121
-
122
- run_button = gr.Button("Run", scale=0)
123
-
124
- result = gr.Image(label="Result", show_label=False)
 
 
 
 
125
 
126
- with gr.Accordion("Advanced Settings", open=True):
127
- seed = gr.Slider(
128
- label="Seed",
129
- minimum=0,
130
- maximum=MAX_SEED,
131
- step=1,
132
- value=0,
133
- )
134
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
135
-
136
- with gr.Row():
137
- width = gr.Slider(
138
- label="Width",
139
- minimum=256,
140
- maximum=MAX_IMAGE_SIZE,
141
- step=32,
142
- value=1024,
143
- )
144
- height = gr.Slider(
145
- label="Height",
146
- minimum=256,
147
- maximum=MAX_IMAGE_SIZE,
148
- step=32,
149
- value=1024,
150
- )
151
-
152
- with gr.Row():
153
- guidance_scale = gr.Slider(
154
- label="Guidance Scale",
155
- minimum=1,
156
- maximum=15,
157
- step=0.1,
158
- value=3.5,
159
- )
160
- num_inference_steps = gr.Slider(
161
- label="Number of inference steps",
162
- minimum=1,
163
- maximum=50,
164
- step=1,
165
- value=28,
166
- )
167
 
168
- download_format = gr.Radio(
169
- label="Download Format",
170
- choices=["PNG", "JPEG", "SVG", "WEBP"],
171
- value="PNG",
172
- type="value",
173
- )
174
-
175
- download_button = gr.Button("Download Image")
176
-
177
- download_button.click(
178
- fn=download_image,
179
- inputs=[result, download_format],
180
- outputs=gr.File(label="Download"),
181
- )
182
-
183
- gr.Examples(
184
- examples=examples,
185
- fn=infer,
186
- inputs=[prompt],
187
- outputs=[result, seed],
188
- cache_examples="lazy"
189
- )
190
-
191
- gr.on(
192
- triggers=[run_button.click, prompt.submit],
193
- fn=infer,
194
  inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
195
  outputs=[result, seed]
196
  )
197
 
198
- demo.load(
199
- fn=lambda: None,
200
- inputs=None,
201
- outputs=None
202
- )
203
 
204
- demo.launch(share=True)
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
 
4
  import torch
5
+ from diffusers import DiffusionPipeline
 
 
6
  import os
7
 
8
+ # Constants
9
+ MAX_SEED = np.iinfo(np.int32).max
10
+ MAX_IMAGE_SIZE = 2048
11
+ DEFAULT_IMAGE_SIZE = 1024
12
+
13
+ # Model setup
14
  dtype = torch.bfloat16
15
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
16
  huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
17
 
18
+ pipe = DiffusionPipeline.from_pretrained(
19
+ "black-forest-labs/FLUX.1-dev",
20
+ torch_dtype=dtype,
21
+ token=huggingface_token
22
+ ).to(device)
23
 
24
+ def generate_image(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
  generator = torch.Generator().manual_seed(seed)
 
35
  ).images[0]
36
  return image, seed
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  css = """
39
  body {
40
  background-color: #f4faff;
41
  color: #005662;
42
  font-family: 'Poppins', sans-serif;
43
  }
44
+ .container {
45
  margin: 0 auto;
46
+ max-width: 900px;
47
  padding: 20px;
48
  }
49
  .gr-button {
 
55
  .gr-button:hover {
56
  background-color: #0277bd;
57
  }
58
+ .gr-box {
 
59
  border-radius: 12px;
60
+ border: 1px solid #eeeeee;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  }
62
  """
63
 
64
  with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
65
+ gr.Markdown("""
66
+ # FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
67
 
68
+ Enter a text prompt below to generate an image. Click 'Generate' to create your image.
69
+ """)
70
+
71
+ with gr.Row():
72
+ with gr.Column(scale=4):
 
 
 
 
 
 
 
73
  prompt = gr.Text(
74
  label="Prompt",
75
+ placeholder="Enter your prompt here",
76
+ lines=2
 
 
77
  )
78
+ with gr.Column(scale=1):
79
+ generate_button = gr.Button("Generate", variant="primary")
80
+
81
+ result = gr.Image(label="Generated Image", type="pil")
82
+
83
+ with gr.Accordion("Advanced Settings", open=False):
84
+ seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
85
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
86
 
87
+ with gr.Row():
88
+ width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
89
+ height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
+ with gr.Row():
92
+ guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
93
+ num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
94
+
95
+ gr.Examples(
96
+ examples=[
97
+ "a galaxy swirling with vibrant blue and purple hues",
98
+ "a futuristic cityscape under a dark sky",
99
+ "a serene forest with a magical glowing tree",
100
+ "a portrait of a smiling woman with a colorful floral crown",
101
+ "a fantastical creature with the body of a dragon and the wings of a butterfly",
102
+ ],
103
+ inputs=prompt,
104
+ outputs=[result, seed],
105
+ fn=generate_image,
106
+ cache_examples=True,
107
+ )
108
+
109
+ generate_button.click(
110
+ fn=generate_image,
 
 
 
 
 
 
111
  inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
112
  outputs=[result, seed]
113
  )
114
 
 
 
 
 
 
115
 
116
+ demo.launch(share=True)