File size: 3,836 Bytes
dc2b56f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# LLM Finetuner Project Plan

## 1. Project Overview

The LLM Finetuner is a user-friendly application designed to simplify the process of fine-tuning Large Language Models (LLMs) using the Unsloth library. The application provides a graphical user interface for dataset preparation, model selection, fine-tuning, testing, and GGUF conversion.

## 2. Project Structure

```

llm_finetuner/

β”œβ”€β”€ main.py

β”œβ”€β”€ ui.py

β”œβ”€β”€ model_utils.py

β”œβ”€β”€ dataset_utils.py

β”œβ”€β”€ training_utils.py

β”œβ”€β”€ inference_utils.py

β”œβ”€β”€ gguf_utils.py

β”œβ”€β”€ requirements.txt

└── README.md

```

## 3. Key Components

### 3.1 User Interface (ui.py)
- Gradio-based interface with tabs for different functionalities
- Handles user inputs and interactions
- Coordinates between different modules

### 3.2 Model Utilities (model_utils.py)

- Handles model loading and initialization

- Supports various pre-trained models from Unsloth



### 3.3 Dataset Utilities (dataset_utils.py)
- Manages dataset preparation from Hugging Face and local files
- Implements synthetic dataset creation using AI providers (OpenAI, Anthropic, Ollama)

### 3.4 Training Utilities (training_utils.py)

- Implements the fine-tuning process using Unsloth and TRL



### 3.5 Inference Utilities (inference_utils.py)
- Handles model testing and inference

### 3.6 GGUF Conversion Utilities (gguf_utils.py)

- Manages the conversion of fine-tuned models to GGUF format



## 4. Implementation Plan



### 4.1 Phase 1: Core Functionality

- [x] Implement basic UI structure

- [x] Develop model loading and initialization

- [x] Implement dataset preparation for Hugging Face and local files using the model transformers and chat template.

- [x] Develop basic fine-tuning functionality using the prepared dataset

- [x] Implement model testing

- [x] Add GGUF conversion capability



### 4.2 Phase 2: Enhanced Features

- [x] Implement synthetic dataset creation

- [ ] Improve error handling and user feedback

- [ ] Implement progress tracking for long-running operations

- [ ] Add support for custom model configurations



### 4.3 Phase 3: Optimization and Advanced Features

- [ ] Optimize performance for large datasets and models

- [ ] Implement advanced fine-tuning techniques (e.g., LoRA, QLoRA)

- [ ] Add support for distributed training

- [ ] Implement model comparison tools



## 5. Testing Plan



### 5.1 Unit Testing

- Develop unit tests for each utility module

- Ensure proper error handling and edge case coverage



### 5.2 Integration Testing

- Test the interaction between different modules

- Verify data flow from UI to backend and vice versa



### 5.3 User Acceptance Testing

- Conduct usability testing with potential users

- Gather feedback on UI intuitiveness and feature completeness



## 6. Deployment Plan



### 6.1 Local Deployment

- Provide clear instructions for local installation and setup

- Create a comprehensive README with usage guidelines



### 6.2 Cloud Deployment (Future Consideration)

- Explore options for cloud deployment (e.g., Hugging Face Spaces, Google Cloud)

- Implement necessary security measures for cloud deployment



## 7. Documentation



- Create user documentation explaining each feature and its usage

- Develop technical documentation for future maintainers

- Include examples and use cases in the documentation



## 8. Maintenance and Updates



- Establish a process for regular updates to supported models and libraries

- Plan for ongoing bug fixes and feature enhancements based on user feedback





This project plan provides a roadmap for the development, testing, and deployment of the LLM Finetuner application. It should be reviewed and updated regularly as the project progresses and new requirements or challenges emerge.