Spaces:
Sleeping
Sleeping
File size: 1,160 Bytes
3982870 24bab8a 86e2085 3982870 a90efc8 3982870 5c7c640 3982870 46194c9 2c5d4dc 24bab8a 3982870 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
from io import BytesIO
@st.cache_resource()
def load_model():
model=tf.keras.models.load_model('./hip_impant_model.h5')
return model
with st.spinner('Model is being loaded..'):
model=load_model()
st.write("""
# Image Classification
"""
)
st.set_option('deprecation.showfileUploaderEncoding', False)
uploadedFile = st.file_uploader("Upload an X-ray image")
file = BytesIO(uploadedFile)
st.set_option('deprecation.showfileUploaderEncoding', False)
def model_prediction(img, model):
resize = tf.image.resize(img, (256,256))
yhat = model.predict(np.expand_dims(resize/255, 0))
if(yhat>0.5):
result = "Prediction is loose"
else:
result = "Prediction is control"
return result
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
predictions = mode_prediction(image, model)
st.write(prediction)
print(
"This image most likely belongs to {}."
.format(prediction)
)
|