Spaces:
Sleeping
Sleeping
File size: 1,235 Bytes
3982870 24bab8a 343c9a4 e645000 a90efc8 3982870 5c7c640 3982870 ac8451b 3982870 86f5b35 e645000 9d76973 e645000 a9ea4ad e645000 f6ad381 8904fa3 76ac1d3 fa7aca9 f6ad381 8904fa3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
import imageio.v3 as iio
@st.cache_resource()
def load_model():
model=tf.keras.models.load_model('./hip_impant_model.h5')
return model
st.title(":blue[Nishant Guvvada's] :red[AI Journey] The Hip-Implant X-ray Assistant")
image = Image.open('./title.jpg')
st.image(image)
st.write("""
# Image Classification
"""
)
file = st.file_uploader("Upload an X-ray image", type= ['png', 'jpg'])
def model_prediction(path):
resize = tf.image.resize(path, (256,256))
with st.spinner('Model is being loaded..'):
model=load_model()
yhat = model.predict(np.expand_dims(resize/255, 0))
return yhat
def on_click():
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
image = image.convert('RGB')
predictions = model_prediction(np.array(image))
if (predictions>0.5):
st.write("""# Prediction : Implant is loose""")
else:
st.write("""# Prediction : Implant is in control""")
st.button('Predict', on_click=on_click) |