nishantguvvada commited on
Commit
bb77bdd
·
1 Parent(s): 3647672

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -53
app.py CHANGED
@@ -1,59 +1,6 @@
1
  import streamlit as st
2
  import tensorflow as tf
3
  from PIL import Image
4
- # from src.utils import *
5
- # from src.vertex import *
6
-
7
- st.set_page_config(
8
- page_title="Hip-Implant Image Classification",
9
- page_icon=":robot:",
10
- layout="centered",
11
- initial_sidebar_state="expanded",
12
- menu_items={
13
- 'How to use': "# Upload an image of a hip-implant (search <loose hip implant> on google), the app will classify the hip-implant as loose or in-control."
14
- }
15
- )
16
-
17
- #creating session states
18
- create_session_state()
19
-
20
-
21
-
22
- # image = Image.open('./image/title.jpg')
23
- # st.image(image)
24
- st.title(":red[My AI Journey] :blue[Nishant Guvvada] X-ray Assistant")
25
-
26
- with st.sidebar:
27
- # image = Image.open('./image/sidebar_image.jpg')
28
- # st.image(image)
29
- st.markdown("<h2 style='text-align: center; color: red;'>Settings Tab</h2>", unsafe_allow_html=True)
30
-
31
-
32
- st.write("Model Settings:")
33
-
34
- #define the temeperature for the model
35
- temperature_value = st.slider('Temperature :', 0.0, 1.0, 0.2)
36
- st.session_state['temperature'] = temperature_value
37
-
38
- #define the temeperature for the model
39
- token_limit_value = st.slider('Token limit :', 1, 1024, 256)
40
- st.session_state['token_limit'] = token_limit_value
41
-
42
- #define the temeperature for the model
43
- top_k_value = st.slider('Top-K :', 1,40,40)
44
- st.session_state['top_k'] = top_k_value
45
-
46
- #define the temeperature for the model
47
- top_p_value = st.slider('Top-P :', 0.0, 1.0, 0.8)
48
- st.session_state['top_p'] = top_p_value
49
-
50
- if st.button("Reset Session"):
51
- reset_session()
52
-
53
-
54
- st.image(bytes_data, caption='User uploaded image')
55
- st.balloons()
56
-
57
 
58
  @st.cache(allow_output_mutation=True)
59
  def load_model():
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  from PIL import Image
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  @st.cache(allow_output_mutation=True)
6
  def load_model():