Spaces:
Sleeping
Sleeping
File size: 5,066 Bytes
19c08c2 efb91fe 19c08c2 bc96fd4 50dbd25 bc96fd4 19c08c2 7291c1b 3632e62 7291c1b 8887ce7 7291c1b 3632e62 19c08c2 bc96fd4 19c08c2 572aec8 efb91fe 19c08c2 efb91fe 19c08c2 6547b74 18940a0 31f7642 19c08c2 31f7642 1d792f8 19c08c2 7291c1b 19c08c2 7291c1b 19c08c2 efb91fe 19c08c2 6547b74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import streamlit as st
import pickle
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
import imageio.v3 as iio
import time
from textwrap import wrap
import matplotlib.pylab as plt
from tensorflow.keras import Input
from tensorflow.keras.layers import (
GRU,
Add,
AdditiveAttention,
Attention,
Concatenate,
Dense,
Embedding,
LayerNormalization,
Reshape,
StringLookup,
TextVectorization,
)
MAX_CAPTION_LEN = 64
MINIMUM_SENTENCE_LENGTH = 5
IMG_HEIGHT = 299
IMG_WIDTH = 299
IMG_CHANNELS = 3
ATTENTION_DIM = 512 # size of dense layer in Attention
VOCAB_SIZE = 20000
FEATURES_SHAPE = (8, 8, 1536)
@st.cache_resource()
def load_image_model():
image_model=tf.keras.models.load_model('./image_caption_model.h5')
return image_model
# @st.cache_resource()
# def load_decoder_model():
# decoder_model=tf.keras.models.load_model('./decoder_pred_model.h5')
# return decoder_model
# @st.cache_resource()
# def load_encoder_model():
# encoder=tf.keras.models.load_model('./encoder_model.h5')
# return encoder
# **** ENCODER ****
image_input = Input(shape=(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
encoder_output = Dense(ATTENTION_DIM, activation="relu")(x)
encoder = tf.keras.Model(inputs=image_input, outputs=encoder_output)
# **** ENCODER ****
# **** DECODER ****
word_input = Input(shape=(MAX_CAPTION_LEN), name="words")
embed_x = Embedding(VOCAB_SIZE, ATTENTION_DIM)(word_input)
decoder_gru = GRU(
ATTENTION_DIM,
return_sequences=True,
return_state=True,
)
gru_output, gru_state = decoder_gru(embed_x)
decoder_attention = Attention()
context_vector = decoder_attention([gru_output, encoder_output])
addition = Add()([gru_output, context_vector])
layer_norm = LayerNormalization(axis=-1)
layer_norm_out = layer_norm(addition)
decoder_output_dense = Dense(VOCAB_SIZE)
# -----------
gru_state_input = Input(shape=(ATTENTION_DIM), name="gru_state_input")
# Reuse trained GRU, but update it so that it can receive states.
gru_output, gru_state = decoder_gru(embed_x, initial_state=gru_state_input)
# Reuse other layers as well
context_vector = decoder_attention([gru_output, encoder_output])
addition_output = Add()([gru_output, context_vector])
layer_norm_output = layer_norm(addition_output)
decoder_output = decoder_output_dense(layer_norm_output)
# Define prediction Model with state input and output
decoder_pred_model = tf.keras.Model(
inputs=[word_input, gru_state_input, encoder_output],
outputs=[decoder_output, gru_state],
)
# **** DECODER ****
st.title(":blue[Nishant Guvvada's] :red[AI Journey] Image Caption Generation")
image = Image.open('./title.jpg')
st.image(image)
st.write("""
# Multi-Modal Machine Learning
"""
)
file = st.file_uploader("Upload any image and the model will try to provide a caption to it!", type= ['png', 'jpg'])
# We will override the default standardization of TextVectorization to preserve
# "<>" characters, so we preserve the tokens for the <start> and <end>.
def standardize(inputs):
inputs = tf.strings.lower(inputs)
return tf.strings.regex_replace(
inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", ""
)
# Choose the most frequent words from the vocabulary & remove punctuation etc.
vocab = open('./tokenizer_vocab.txt', 'rb')
tokenizer = pickle.load(vocab)
# Lookup table: Word -> Index
word_to_index = StringLookup(
mask_token="", vocabulary=tokenizer
)
## Probabilistic prediction using the trained model
def predict_caption(file):
filename = Image.open(file)
image = filename.convert('RGB')
image = np.array(image)
gru_state = tf.zeros((1, ATTENTION_DIM))
resize = tf.image.resize(image, (IMG_HEIGHT, IMG_WIDTH))
img = resize/255
# encoder = load_encoder_model()
features = encoder(tf.expand_dims(img, axis=0))
dec_input = tf.expand_dims([word_to_index("<start>")], 1)
result = []
# decoder_pred_model = load_decoder_model()
for i in range(MAX_CAPTION_LEN):
predictions, gru_state = decoder_pred_model(
[dec_input, gru_state, features]
)
# draws from log distribution given by predictions
top_probs, top_idxs = tf.math.top_k(
input=predictions[0][0], k=10, sorted=False
)
chosen_id = tf.random.categorical([top_probs], 1)[0].numpy()
predicted_id = top_idxs.numpy()[chosen_id][0]
result.append(tokenizer[predicted_id])
if predicted_id == word_to_index("<end>"):
return img, result
dec_input = tf.expand_dims([predicted_id], 1)
return img, result
def on_click():
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
for i in range(5):
image, caption = predict_caption(file)
#print(" ".join(caption[:-1]) + ".")
st.write(" ".join(caption[:-1]) + ".")
st.button('Generate', on_click=on_click) |