Spaces:
Sleeping
Sleeping
File size: 1,628 Bytes
19c08c2 2ec9390 19c08c2 2ec9390 bc96fd4 2ec9390 19c08c2 2ec9390 31f7642 2ec9390 19c08c2 2ec9390 19c08c2 2ec9390 19c08c2 2ec9390 19c08c2 2ec9390 19c08c2 da868a5 6547b74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import streamlit as st
import tensorflow as tf
import numpy as np
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
st.title(":blue[Nishant Guvvada's] :red[AI Journey] Image Caption Generation")
image = Image.open('./title.jpg')
st.image(image)
st.write("""
# Multi-Modal Machine Learning
"""
)
file = st.file_uploader("Upload an image to generate captions!", type= ['png', 'jpg'])
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
def on_click():
if file is None:
st.text("Please upload an image file")
else:
predict_step(file)
st.button('Generate', on_click=on_click) |