File size: 1,628 Bytes
19c08c2
 
 
2ec9390
 
 
19c08c2
2ec9390
 
 
bc96fd4
2ec9390
 
19c08c2
 
 
 
 
 
 
 
 
2ec9390
31f7642
2ec9390
 
 
 
 
 
 
 
 
19c08c2
2ec9390
19c08c2
2ec9390
 
19c08c2
2ec9390
19c08c2
2ec9390
 
 
19c08c2
 
 
 
 
 
da868a5
6547b74
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import tensorflow as tf
import numpy as np
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image

model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

st.title(":blue[Nishant Guvvada's] :red[AI Journey]  Image Caption Generation")
image = Image.open('./title.jpg')
st.image(image)
st.write("""
         # Multi-Modal Machine Learning
         """
         )

file = st.file_uploader("Upload an image to generate captions!", type= ['png', 'jpg'])

max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
  images = []
  for image_path in image_paths:
    i_image = Image.open(image_path)
    if i_image.mode != "RGB":
      i_image = i_image.convert(mode="RGB")

    images.append(i_image)

  pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
  pixel_values = pixel_values.to(device)

  output_ids = model.generate(pixel_values, **gen_kwargs)

  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
  preds = [pred.strip() for pred in preds]
  return preds


def on_click():
    if file is None:
        st.text("Please upload an image file")
    else:
        predict_step(file)

st.button('Generate', on_click=on_click)