File size: 3,603 Bytes
19c08c2
4c488c4
19c08c2
4c488c4
19c08c2
4c488c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19c08c2
4c488c4
 
 
 
 
 
 
 
bc96fd4
4c488c4
 
 
 
19c08c2
4c488c4
 
 
 
 
 
 
 
 
 
 
19c08c2
 
 
 
 
 
66f98ad
4c488c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31b7258
 
ccd2c4d
31b7258
 
4c488c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f7642
4c488c4
 
 
 
 
 
19c08c2
4c488c4
19c08c2
4c488c4
 
19c08c2
4c488c4
19c08c2
4c488c4
19c08c2
 
 
 
 
 
4c488c4
 
 
 
 
 
6547b74
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import streamlit as st
import pickle
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
import imageio.v3 as iio
import time
from textwrap import wrap
import matplotlib.pylab as plt
from tensorflow.keras import Input
from tensorflow.keras.layers import (
    GRU,
    Add,
    AdditiveAttention,
    Attention,
    Concatenate,
    Dense,
    Embedding,
    LayerNormalization,
    Reshape,
    StringLookup,
    TextVectorization,
)

MAX_CAPTION_LEN = 64
MINIMUM_SENTENCE_LENGTH = 5
IMG_HEIGHT = 299
IMG_WIDTH = 299
IMG_CHANNELS = 3
ATTENTION_DIM = 512  # size of dense layer in Attention
VOCAB_SIZE = 20000
FEATURES_SHAPE = (8, 8, 1536)

@st.cache_resource()
def load_image_model():
    image_model=tf.keras.models.load_model('./image_caption_model.h5')
    return image_model

@st.cache_resource()
def load_decoder_model():
    decoder_model=tf.keras.models.load_model('./decoder_pred_model.h5')
    return decoder_model

@st.cache_resource()
def load_encoder_model():
    encoder=tf.keras.models.load_model('./encoder_model.h5')
    return encoder

    
st.title(":blue[Nishant Guvvada's] :red[AI Journey]  Image Caption Generation")
st.write("""
         # Multi-Modal Machine Learning
         """
         )

file = st.file_uploader("Upload an image to generate captions!", type= ['png', 'jpg'])



# We will override the default standardization of TextVectorization to preserve
# "<>" characters, so we preserve the tokens for the <start> and <end>.
def standardize(inputs):
    inputs = tf.strings.lower(inputs)
    return tf.strings.regex_replace(
        inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", ""
    )

# Choose the most frequent words from the vocabulary & remove punctuation etc.
vocab = open('./tokenizer_vocab.txt', 'rb')
tokenizer = pickle.load(vocab)


# Lookup table: Word -> Index
word_to_index = StringLookup(
    mask_token="", vocabulary=tokenizer
)

# Lookup table: Index -> Word
index_to_word = StringLookup(
    mask_token="", vocabulary=tokenizer, invert=True
)


## Probabilistic prediction using the trained model
def predict_caption(file):
    filename = Image.open(file)
    image = filename.convert('RGB')
    image = np.array(image)
    gru_state = tf.zeros((1, ATTENTION_DIM))

    resize = tf.image.resize(image, (IMG_HEIGHT, IMG_WIDTH))
    img = resize/255
    
    encoder = load_encoder_model()
    features = encoder(tf.expand_dims(img, axis=0))
    dec_input = tf.expand_dims([word_to_index("<start>")], 1)
    result = []
    decoder_pred_model = load_decoder_model()
    for i in range(MAX_CAPTION_LEN):
        predictions, gru_state = decoder_pred_model(
            [dec_input, gru_state, features]
        )

        # draws from log distribution given by predictions
        top_probs, top_idxs = tf.math.top_k(
            input=predictions[0][0], k=10, sorted=False
        )
        chosen_id = tf.random.categorical([top_probs], 1)[0].numpy()
        predicted_id = top_idxs.numpy()[chosen_id][0]

        result.append(tokenizer[predicted_id])

        if predicted_id == word_to_index("<end>"):
            return img, result

        dec_input = tf.expand_dims([predicted_id], 1)

    return img, result


def on_click():
    if file is None:
        st.text("Please upload an image file")
    else:
        image = Image.open(file)
        st.image(image, use_column_width=True)
        for i in range(5):
            image, caption = predict_caption(file)
            #print(" ".join(caption[:-1]) + ".")
            st.write(" ".join(caption[:-1]) + ".")

st.button('Generate', on_click=on_click)