nishantguvvada's picture
Update app.py
572aec8
raw
history blame
3.53 kB
import streamlit as st
import pickle
import tensorflow as tf
import cv2
import numpy as np
from PIL import Image, ImageOps
import imageio.v3 as iio
import time
from textwrap import wrap
import matplotlib.pylab as plt
from tensorflow.keras import Input
from tensorflow.keras.layers import (
GRU,
Add,
AdditiveAttention,
Attention,
Concatenate,
Dense,
Embedding,
LayerNormalization,
Reshape,
StringLookup,
TextVectorization,
)
@st.cache_resource()
def load_image_model():
image_model=tf.keras.models.load_model('./image_caption_model.h5')
return image_model
@st.cache_resource()
def load_decoder_model():
decoder_model=tf.keras.models.load_model('./decoder_pred_model.h5')
return decoder_model
@st.cache_resource()
def load_encoder_model():
encoder=tf.keras.models.load_model('./encoder_model.h5')
return encoder
st.title(":blue[Nishant Guvvada's] :red[AI Journey] Image Caption Generation")
image = Image.open('./title.jpg')
st.image(image)
st.write("""
# Multi-Modal Machine Learning
"""
)
file = st.file_uploader("Upload any image and the model will try to provide a caption to it!", type= ['png', 'jpg'])
MAX_CAPTION_LEN = 64
MINIMUM_SENTENCE_LENGTH = 5
IMG_HEIGHT = 299
IMG_WIDTH = 299
IMG_CHANNELS = 3
ATTENTION_DIM = 512 # size of dense layer in Attention
VOCAB_SIZE = 20000
# We will override the default standardization of TextVectorization to preserve
# "<>" characters, so we preserve the tokens for the <start> and <end>.
def standardize(inputs):
inputs = tf.strings.lower(inputs)
return tf.strings.regex_replace(
inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", ""
)
# Choose the most frequent words from the vocabulary & remove punctuation etc.
vocab = open('./tokenizer_vocab.txt', 'rb')
tokenizer = pickle.load(vocab)
# Lookup table: Word -> Index
word_to_index = StringLookup(
mask_token="", vocabulary=tokenizer
)
## Probabilistic prediction using the trained model
def predict_caption(file):
filename = Image.open(file)
gru_state = tf.zeros((1, ATTENTION_DIM))
img = tf.image.decode_jpeg(filename, channels=IMG_CHANNELS)
img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH))
img = img / 255
encoder = load_encoder_model()
features = encoder(tf.expand_dims(img, axis=0))
dec_input = tf.expand_dims([word_to_index("<start>")], 1)
result = []
decoder_pred_model = load_decoder_model()
for i in range(MAX_CAPTION_LEN):
predictions, gru_state = decoder_pred_model(
[dec_input, gru_state, features]
)
# draws from log distribution given by predictions
top_probs, top_idxs = tf.math.top_k(
input=predictions[0][0], k=10, sorted=False
)
chosen_id = tf.random.categorical([top_probs], 1)[0].numpy()
predicted_id = top_idxs.numpy()[chosen_id][0]
result.append(tokenizer[predicted_id])
if predicted_id == word_to_index("<end>"):
return img, result
dec_input = tf.expand_dims([predicted_id], 1)
return img, result
def on_click():
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
for i in range(5):
image, caption = predict_caption(file)
#print(" ".join(caption[:-1]) + ".")
st.write(" ".join(caption[:-1]) + ".")
st.button('Generate', on_click=on_click)