import streamlit as st import tensorflow as tf import cv2 import numpy as np from PIL import Image, ImageOps import imageio.v3 as iio import time from textwrap import wrap import matplotlib.pylab as plt import numpy as np import tensorflow as tf import tensorflow_datasets as tfds import tensorflow_hub as hub from tensorflow.keras import Input from tensorflow.keras.layers import ( GRU, Add, AdditiveAttention, Attention, Concatenate, Dense, Embedding, LayerNormalization, Reshape, StringLookup, TextVectorization, ) @st.cache_resource() def load_image_model(): image_model=tf.keras.models.load_model('./image_caption_model.h5') return image_model @st.cache_resource() def load_decoder_model(): decoder_model=tf.keras.models.load_model('./decoder_pred_model.h5') return decoder_model @st.cache_resource() def load_encoder_model(): encoder=tf.keras.models.load_model('./encoder_model.h5') return encoder st.title(":blue[Nishant Guvvada's] :red[AI Journey] Image Caption Generation") image = Image.open('./title.jpg') st.image(image) st.write(""" # Multi-Modal Machine Learning """ ) file = st.file_uploader("Upload any image and the model will try to provide a caption to it!", type= ['png', 'jpg']) MAX_CAPTION_LEN = 64 MINIMUM_SENTENCE_LENGTH = 5 IMG_HEIGHT = 299 IMG_WIDTH = 299 IMG_CHANNELS = 3 ATTENTION_DIM = 512 # size of dense layer in Attention VOCAB_SIZE = 20000 # We will override the default standardization of TextVectorization to preserve # "<>" characters, so we preserve the tokens for the and . def standardize(inputs): inputs = tf.strings.lower(inputs) return tf.strings.regex_replace( inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", "" ) # Choose the most frequent words from the vocabulary & remove punctuation etc. tokenizer = TextVectorization( max_tokens=VOCAB_SIZE, standardize=standardize, output_sequence_length=MAX_CAPTION_LEN, ) # Lookup table: Word -> Index word_to_index = StringLookup( mask_token="", vocabulary=tokenizer.get_vocabulary() ) # Lookup table: Index -> Word index_to_word = StringLookup( mask_token="", vocabulary=tokenizer.get_vocabulary(), invert=True ) ## Probabilistic prediction using the trained model def predict_caption(file): gru_state = tf.zeros((1, ATTENTION_DIM)) img = tf.image.decode_jpeg(tf.io.read_file(filename), channels=IMG_CHANNELS) img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH)) img = img / 255 encoder = load_encoder_model() features = encoder(tf.expand_dims(img, axis=0)) dec_input = tf.expand_dims([word_to_index("")], 1) result = [] decoder_pred_model = load_decoder_model() for i in range(MAX_CAPTION_LEN): predictions, gru_state = decoder_pred_model( [dec_input, gru_state, features] ) # draws from log distribution given by predictions top_probs, top_idxs = tf.math.top_k( input=predictions[0][0], k=10, sorted=False ) chosen_id = tf.random.categorical([top_probs], 1)[0].numpy() predicted_id = top_idxs.numpy()[chosen_id][0] result.append(tokenizer.get_vocabulary()[predicted_id]) if predicted_id == word_to_index(""): return img, result dec_input = tf.expand_dims([predicted_id], 1) return img, result filename = "../sample_images/surf.jpeg" # you can also try surf.jpeg for i in range(5): image, caption = predict_caption(filename) print(" ".join(caption[:-1]) + ".") img = tf.image.decode_jpeg(tf.io.read_file(filename), channels=IMG_CHANNELS) plt.imshow(img) plt.axis("off") filename = np.array(Image.open(file).convert('RGB')) def model_prediction(path): resize = tf.image.resize(path, (256,256)) with st.spinner('Model is being loaded..'): model=load_image_model() yhat = model.predict(np.expand_dims(resize/255, 0)) return yhat def on_click(): if file is None: st.text("Please upload an image file") else: image = Image.open(file) st.image(image, use_column_width=True) image = image.convert('RGB') predictions = model_prediction(np.array(image)) if (predictions>0.5): st.write("""# Prediction : Implant is loose""") else: st.write("""# Prediction : Implant is in control""") st.button('Predict', on_click=on_click)