import gradio as gr | |
import sambanova_gradio | |
gr.load("Qwen2.5-Coder-32B-Instruct", src=sambanova_gradio.registry).launch() | |
# import os | |
# import gradio as gr | |
# import openai | |
# # Set up the OpenAI client with the Sambanova API | |
# client = openai.OpenAI( | |
# api_key=os.environ.get("SAMBANOVA_API_KEY"), | |
# base_url="https://api.sambanova.ai/v1", | |
# ) | |
# def generate_text(prompt): | |
# response = client.chat.completions.create( | |
# model='Qwen2.5-Coder-32B-Instruct', | |
# messages=[ | |
# {"role": "system", "content": "You are a helpful assistant"}, | |
# {"role": "user", "content": prompt} | |
# ], | |
# temperature=0, | |
# max_tokens=8192 | |
# ) | |
# return response.choices[0].message.content | |
# # Create the Gradio interface | |
# iface = gr.Interface( | |
# fn=generate_text, | |
# inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
# outputs="text", | |
# title="Qwen2.5-Coder-32B-Instruct Chatbot", | |
# description="Enter a prompt and get a response from the Qwen2.5-Coder-32B-Instruct model." | |
# ) | |
# # Launch the interface | |
# iface.launch() |