File size: 1,783 Bytes
d9f919a
 
81d7107
 
 
 
 
feba9aa
81d7107
 
feba9aa
 
81d7107
feba9aa
 
 
 
 
a5f123f
81d7107
 
 
 
 
 
 
 
 
 
 
 
1ac7d5c
 
81d7107
 
 
 
fb5c3ca
 
81d7107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import nemo
from nemo.collections.asr.models.msdd_models import NeuralDiarizer
import gradio as gr
import pandas as pd

device = "cuda" if torch.cuda.is_available() else "cpu"

model = NeuralDiarizer.from_pretrained("diar_msdd_telephonic").to(device)

def run_diarization(path1):
    annotation = model(path1)
    rttm=annotation.to_rttm()
    df = pd.DataFrame(columns=['start_time', 'end_time', 'speaker'])
    for idx,line in enumerate(rttm.splitlines()):
        split = line.split()
        start_time, duration, speaker = split[3], split[4], split[7]
        end_time = float(start_time) + float(duration)
        df.loc[idx] = start_time, end_time, speaker
    return df 
	
inputs = [
    gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Input Audio"),
]
output = gr.outputs.Dataframe()

description = (
    "This demonstration will perform offline speaker diarization on an audio file using nemo"
)

article = (
    "<p style='text-align: center'>"
    "<a href='https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/diar_msdd_telephonic' target='_blank'>πŸŽ™οΈ Learn more about MSDD model</a> | "
    "<a href='https://arxiv.org/abs/2203.15974' target='_blank'>πŸ“š MSDD paper</a> | "
    "<a href='https://github.com/NVIDIA/NeMo' target='_blank'>πŸ§‘β€πŸ’» Repository</a>"
    "</p>"
)
examples = [
    ["data/sample_interview_conversation.wav"],
    ["data/id10270_5r0dWxy17C8-00001.wav"],
]

interface = gr.Interface(
    fn=run_diarization,
    inputs=inputs,
    outputs=output,
    title="Offline Speaker Diarization with NeMo",
    description=description,
    article=article,
    layout="horizontal",
    theme="huggingface",
    allow_flagging=False,
    live=False,
    examples=examples,
)
interface.launch(enable_queue=True)