File size: 2,896 Bytes
8ed98a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import gradio as gr
import torch
from nemo.collections.asr.models import EncDecSpeakerLabelModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_OK = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div>
</div>
"""
)
OUTPUT_FAIL = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div>
</div>
"""
)
THRESHOLD = 0.80
model_name = "nvidia/speakerverification_en_titanet_large"
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device)
def compare_samples(path1, path2):
if not (path1 and path2):
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
output = model.verify_speakers(path1,path2,THRESHOLD)
return OUTPUT_OK if output else OUTPUT_FAIL
inputs = [
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
]
output = gr.outputs.HTML(label="")
description = (
"This demonstration will analyze two recordings of speech and ascertain whether they have been spoken by the same individual.\n"
"You can attempt this exercise using your own voice."
)
article = (
"<p style='text-align: center'>"
"<a href='https://huggingface.co/nvidia/speakerverification_en_titanet_large' target='_blank'>ποΈ Learn more about TitaNet model</a> | "
"<a href='https://arxiv.org/pdf/2110.04410.pdf' target='_blank'>π TitaNet paper</a> | "
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» Repository</a>"
"</p>"
)
examples = [
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10270_5r0dWxy17C8-00002.wav"],
["data/id10271_1gtz-CUIygI-00001.wav", "data/id10271_1gtz-CUIygI-00002.wav"],
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10271_1gtz-CUIygI-00001.wav"],
["data/id10270_5r0dWxy17C8-00002.wav", "data/id10271_1gtz-CUIygI-00002.wav"],
]
interface = gr.Interface(
fn=compare_samples,
inputs=inputs,
outputs=output,
title="Speaker Verification with TitaNet Embeddings",
description=description,
article=article,
layout="horizontal",
theme="huggingface",
allow_flagging=False,
live=False,
examples=examples,
)
interface.launch(enable_queue=True) |