import gradio as gr import torch from nemo.collections.asr.models import EncDecSpeakerLabelModel device = torch.device("cuda" if torch.cuda.is_available() else "cpu") STYLE = """ """ OUTPUT_OK = ( STYLE + """

The provided samples are

Same Speakers!!!

similarity score: {:.1f}%

(Similarity score must be atleast 80% to be considered as same speaker)
""" ) OUTPUT_FAIL = ( STYLE + """

The provided samples are from

Different Speakers!!!

similarity score: {:.1f}%

(Similarity score must be atleast 80% to be considered as same speaker)
""" ) THRESHOLD = 0.80 model_name = "nvidia/speakerverification_en_titanet_large" model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device) def compare_samples(path1, path2): if not (path1 and path2): return 'ERROR: Please record audio for *both* speakers!' embs1 = model.get_embedding(path1).squeeze() embs2 = model.get_embedding(path2).squeeze() #Length Normalize X = embs1 / torch.linalg.norm(embs1) Y = embs2 / torch.linalg.norm(embs2) # Score similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5) similarity_score = (similarity_score + 1) / 2 # Decision if similarity_score >= THRESHOLD: return OUTPUT_OK.format(similarity_score * 100) else: return OUTPUT_FAIL.format(similarity_score * 100) inputs = [ gr.Audio(sources=["microphone"], type="filepath", label="Speaker #1"), gr.Audio(sources=["microphone"], type="filepath", label="Speaker #2"), ] upload_inputs = [ gr.Audio(sources=["upload"], type="filepath", label="Speaker #1"), gr.Audio(sources=["upload"], type="filepath", label="Speaker #2"), ] description = ( "This demonstration will analyze two recordings of speech and ascertain whether they have been spoken by the same individual.\n" "You can attempt this exercise using your own voice." ) article = ( "

" "🎙️ Learn more about TitaNet model | " "📚 TitaNet paper | " "🧑‍💻 Repository" "

" ) examples = [ ["data/id10270_5r0dWxy17C8-00001.wav", "data/id10270_5r0dWxy17C8-00002.wav"], ["data/id10271_1gtz-CUIygI-00001.wav", "data/id10271_1gtz-CUIygI-00002.wav"], ["data/id10270_5r0dWxy17C8-00001.wav", "data/id10271_1gtz-CUIygI-00001.wav"], ["data/id10270_5r0dWxy17C8-00002.wav", "data/id10271_1gtz-CUIygI-00002.wav"], ] microphone_interface = gr.Interface( fn=compare_samples, inputs=inputs, outputs=gr.HTML(label=""), title="Speaker Verification with TitaNet Embeddings", description=description, article=article, theme="huggingface", allow_flagging=False, live=False, examples=examples, ) upload_interface = gr.Interface( fn=compare_samples, inputs=upload_inputs, outputs=gr.HTML(label=""), title="Speaker Verification with TitaNet Embeddings", description=description, article=article, theme="huggingface", allow_flagging=False, live=False, examples=examples, ) demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"]) demo.queue(max_size=5, default_concurrency_limit=4) demo.launch()