Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
from PIL import Image | |
import gradio as gr | |
import io | |
# Load model and feature extractor | |
def load_model(): | |
processor = AutoImageProcessor.from_pretrained("therealcyberlord/stanford-car-vit-patch16") | |
model = AutoModelForImageClassification.from_pretrained("therealcyberlord/stanford-car-vit-patch16") | |
return processor, model | |
processor, model = load_model() | |
# Function to classify image | |
def classify_image(image): | |
# Convert image if necessary | |
if not isinstance(image, Image.Image): | |
image = Image.open(io.BytesIO(image)).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
labels = model.config.id2label | |
predicted_class = labels[predicted_class_idx] | |
return predicted_class | |
# Define Gradio Interface | |
app = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Car Classification", | |
description="Upload a car image to classify its model." | |
) | |
# Launch the app | |
app.launch(share=True) | |