Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Load model and feature extractor
|
8 |
+
def load_model():
|
9 |
+
processor = AutoImageProcessor.from_pretrained("therealcyberlord/stanford-car-vit-patch16")
|
10 |
+
model = AutoModelForImageClassification.from_pretrained("therealcyberlord/stanford-car-vit-patch16")
|
11 |
+
return processor, model
|
12 |
+
|
13 |
+
processor, model = load_model()
|
14 |
+
|
15 |
+
# Function to classify image
|
16 |
+
def classify_image(image):
|
17 |
+
# Convert image if necessary
|
18 |
+
if not isinstance(image, Image.Image):
|
19 |
+
image = Image.open(io.BytesIO(image)).convert("RGB")
|
20 |
+
|
21 |
+
inputs = processor(images=image, return_tensors="pt")
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
logits = outputs.logits
|
25 |
+
predicted_class_idx = logits.argmax(-1).item()
|
26 |
+
labels = model.config.id2label
|
27 |
+
predicted_class = labels[predicted_class_idx]
|
28 |
+
return predicted_class
|
29 |
+
|
30 |
+
# Define Gradio Interface
|
31 |
+
app = gr.Interface(
|
32 |
+
fn=classify_image,
|
33 |
+
inputs=gr.Image(type="pil"),
|
34 |
+
outputs="text",
|
35 |
+
title="Car Classification",
|
36 |
+
description="Upload a car image to classify its model."
|
37 |
+
)
|
38 |
+
|
39 |
+
# Launch the app
|
40 |
+
app.launch()
|