Spaces:
Sleeping
Sleeping
from fastai.vision.all import * | |
import gradio as gr | |
# any external function used for labeling needs to be included in here | |
def is_cat(x): return x[0].isupper() | |
# this learner 'pkl' file is exactly the same as what you get when you trained it | |
# example : learn = vision_learner(dls,resnet18,metrics=error_rate) | |
# example : learn.fine_tune(3) | |
learn=load_learner('catsdogsmodel.pkl') | |
# Preping data for gradio, We are creating a dictionary for gradio. | |
# One of the annoying things about 'gradio' is that it does not recognize tensor number and probabilities. | |
# In fact, numpy either | |
categories = ('Dog', 'Cat') | |
# prediction, index & probabilities, gradio expects a dictinoary | |
def classify_image(img): | |
pred,idx,probs = learn.predict(img) | |
return dict(zip(categories,map(float, probs))) | |
image = gr.inputs.Image(shape=(192,192)) | |
label = gr.outputs.Label() | |
examples = ['dog.jpg','dog2.jpg','cat.jpg'] | |
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) | |
# to create a public link, set 'share=True' in 'launch()' | |
intf.launch(inline=False) |