Spaces:
Runtime error
Runtime error
File size: 8,600 Bytes
1aecc62 4b2d726 1aecc62 0982b74 4b2d726 1aecc62 4b2d726 1aecc62 28b8f0a 4b2d726 1aecc62 4b2d726 1aecc62 4b2d726 1aecc62 4b2d726 1aecc62 4b2d726 1aecc62 4b2d726 1aecc62 4b2d726 1aecc62 9145e51 4b2d726 1aecc62 4b2d726 8d96e4a 1aecc62 4b2d726 1aecc62 4b2d726 1aecc62 4b2d726 c2d8e85 4b2d726 c2d8e85 1aecc62 c2d8e85 4b2d726 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import math
from datasets import load_dataset
import gradio as gr
import os
# auth_token = os.environ.get("auth_token")
auth_token = os.environ.get("HF_TOKEN")
Visual_Riddles = load_dataset("nitzanguetta/Visual_Riddles", token=auth_token, trust_remote_code=True)['test']
# print(f"Loaded WHOOPS!, first example:")
# print(whoops[0])
dataset_size = len(Visual_Riddles)
IMAGE = 'Image'
QUESTION = 'Question'
ANSWER = "Answer"
CAPTION = "Image caption"
PROMPT = "Prompt"
MODEL_NAME = "Model name"
HINT = "Hint"
ATTRIBUTION = "Attribution"
DLI = "Difficulty Level Index"
CATEGORY = "Category"
DESIGNER = "Designer"
left_side_columns = [IMAGE]
right_side_columns = [x for x in Visual_Riddles.features.keys() if x not in left_side_columns]
right_side_columns.remove('Image file name')
# right_side_columns.remove('Question')
# enumerate_cols = [CROWD_CAPTIONS, CROWD_EXPLANATIONS, CROWD_UNDERSPECIFIED_CAPTIONS]
emoji_to_label = {IMAGE: 'π¨, π§βπ¨, π»', ANSWER: 'π‘, π€, π§βπ¨', QUESTION: 'β, π€, π‘', CATEGORY: 'π€, π, π‘',
CAPTION: 'π, π, π¬', PROMPT: 'π, π»', MODEL_NAME: 'π¨, π»', HINT:'π€, π',
ATTRIBUTION: 'π, π', DLI:"π‘οΈ, π€, π―", DESIGNER:"π§βπ¨"}
# batch_size = 16
batch_size = 8
target_size = (1024, 1024)
def func(index):
start_index = index * batch_size
end_index = start_index + batch_size
all_examples = [Visual_Riddles[index] for index in list(range(start_index, end_index))]
values_lst = []
for example_idx, example in enumerate(all_examples):
values = get_instance_values(example)
values_lst += values
return values_lst
def get_instance_values(example):
values = []
for k in left_side_columns + right_side_columns:
if k == IMAGE:
value = example["Image"].resize(target_size)
# elif k in enumerate_cols:
# value = list_to_string(example[k])
# elif k == QA:
# qa_list = [f"Q: {x[0]} A: {x[1]}" for x in example[k]]
# value = list_to_string(qa_list)
else:
value = example[k]
values.append(value)
return values
def list_to_string(lst):
return '\n'.join(['{}. {}'.format(i+1, item) for i, item in enumerate(lst)])
demo = gr.Blocks()
def get_col(example):
instance_values = get_instance_values(example)
with gr.Column():
inputs_left = []
assert len(left_side_columns) == len(
instance_values[:len(left_side_columns)]) # excluding the image & designer
for key, value in zip(left_side_columns, instance_values[:len(left_side_columns)]):
if key == IMAGE:
img_resized = example["Image"].resize(target_size)
# input_k = gr.Image(value=img_resized, label=example['commonsense_category'])
input_k = gr.Image(value=img_resized)
else:
label = key.capitalize().replace("_", " ")
input_k = gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}")
inputs_left.append(input_k)
with gr.Accordion("Click for details", open=False):
# with gr.Accordion(example[QUESTION], open=False):
text_inputs_right = []
assert len(right_side_columns) == len(
instance_values[len(left_side_columns):]) # excluding the image & designer
for key, value in zip(right_side_columns, instance_values[len(left_side_columns):]):
label = key.capitalize().replace("_", " ")
num_lines = max(1, len(value) // 50 + (len(value) % 50 > 0)) # Assuming ~50 chars per line
text_input_k = gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}", lines=num_lines)
text_inputs_right.append(text_input_k)
return inputs_left, text_inputs_right
with demo:
gr.Markdown("# Slide to iterate Visual Riddles")
with gr.Column():
num_batches = math.ceil(dataset_size / batch_size)
slider = gr.Slider(minimum=0, maximum=num_batches, step=1, label=f'Page (out of {num_batches})')
with gr.Row():
index = slider.value
start_index = 0 * batch_size
end_index = start_index + batch_size
all_examples = [Visual_Riddles[index] for index in list(range(start_index, end_index))]
all_inputs_left_right = []
for example_idx, example in enumerate(all_examples):
inputs_left, text_inputs_right = get_col(example)
inputs_left_right = inputs_left + text_inputs_right
all_inputs_left_right += inputs_left_right
slider.change(func, inputs=[slider], outputs=all_inputs_left_right)
# demo.launch()
credentials = [
("Viri", "Aa123")
]
# Launch the interface with password protection
demo.launch(auth=credentials)
# import math
# from datasets import load_dataset
# import gradio as gr
# import os
#
# # Set up environment variables and load dataset
# auth_token = os.environ.get("HF_TOKEN")
# Visual_Riddles = load_dataset("nitzanguetta/Visual_Riddles", token=auth_token, trust_remote_code=True)['test']
# dataset_size = len(Visual_Riddles)
#
# # Define attributes
# IMAGE = 'Image'
# QUESTION = 'Question'
# ANSWER = "Answer"
# CAPTION = "Image caption"
# PROMPT = "Prompt"
# MODEL_NAME = "Model name"
# HINT = "Hint"
# ATTRIBUTION = "Attribution"
# DLI = "Difficulty Level Index"
# CATEGORY = "Category"
# DESIGNER = "Designer"
#
# left_side_columns = [IMAGE]
# right_side_columns = [x for x in Visual_Riddles.features.keys() if x not in left_side_columns]
# right_side_columns.remove('Image file name')
#
# emoji_to_label = {
# IMAGE: 'π¨, π§βπ¨, π»', ANSWER: 'π‘, π€, π§βπ¨', QUESTION: 'β, π€, π‘', CATEGORY: 'π€, π, π‘',
# CAPTION: 'π, π, π¬', PROMPT: 'π, π»', MODEL_NAME: 'π¨, π»', HINT:'π€, π',
# ATTRIBUTION: 'π, π', DLI:"π‘οΈ, π€, π―", DESIGNER:"π§βπ¨"
# }
#
# batch_size = 8
# target_size = (1024, 1024)
#
# def func(index):
# start_index = index * batch_size
# end_index = start_index + batch_size
# all_examples = [Visual_Riddles[index] for index in list(range(start_index, end_index))]
# values_lst = []
# for example_idx, example in enumerate(all_examples):
# values = get_instance_values(example)
# values_lst += values
# return values_lst
#
# # Define functions to handle data and interface
# def get_instance_values(example):
# values = []
# for k in left_side_columns + right_side_columns:
# if k == IMAGE:
# value = example["Image"].resize(target_size)
# else:
# value = example[k]
# values.append(value)
# return values
#
# def get_col(example):
# instance_values = get_instance_values(example)
# inputs_left, text_inputs_right = [], []
# with gr.Column() as col:
# for key, value in zip(left_side_columns, instance_values[:len(left_side_columns)]):
# if key == IMAGE:
# img_resized = example["Image"].resize(target_size)
# input_k = gr.Image(value=img_resized)
# else:
# label = key.capitalize().replace("_", " ")
# input_k = gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}")
# inputs_left.append(input_k)
# with gr.Accordion("Click for details", open=False):
# for key, value in zip(right_side_columns, instance_values[len(left_side_columns):]):
# label = key.capitalize().replace("_", " ")
# num_lines = max(1, len(value) // 50 + (len(value) % 50 > 0))
# text_input_k = gr.Textbox(value=value, label=f"{label} {emoji_to_label[key]}", lines=num_lines)
# text_inputs_right.append(text_input_k)
# return inputs_left, text_inputs_right
#
# # Create the Gradio Blocks interface
# with gr.Blocks() as demo:
# with gr.Row():
# gr.Markdown("# Visual Riddles Explorer")
# with gr.Column():
# num_batches = math.ceil(dataset_size / batch_size)
# slider = gr.Slider(minimum=0, maximum=num_batches - 1, step=1, label=f'Page (out of {num_batches})')
# slider.change(lambda x: get_col(Visual_Riddles[x * batch_size]), inputs=[slider], outputs=[gr.Row()])
#
# # Define credentials for authentication
# credentials = [
# ("user", "Aa123"),
# ("username2", "password2")
# ]
#
# # Launch the interface with password protection
# demo.launch(auth=credentials)
|