nivashuggingface commited on
Commit
7c02998
Β·
verified Β·
1 Parent(s): 41e1bf7

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -12
README.md CHANGED
@@ -1,12 +1,74 @@
1
- ---
2
- title: Digit Recognition Ui
3
- emoji: 😻
4
- colorFrom: indigo
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.24.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AI Model Training Project
2
+
3
+ This project demonstrates a complete machine learning workflow from data preparation to model deployment, using the MNIST dataset with an innovative approach to digit recognition.
4
+
5
+ ## Project Structure
6
+
7
+ ```
8
+ .
9
+ β”œβ”€β”€ data/ # Dataset storage
10
+ β”œβ”€β”€ models/ # Saved model files
11
+ β”œβ”€β”€ src/ # Source code
12
+ β”‚ β”œβ”€β”€ data_preparation.py
13
+ β”‚ β”œβ”€β”€ model.py
14
+ β”‚ β”œβ”€β”€ training.py
15
+ β”‚ β”œβ”€β”€ evaluation.py
16
+ β”‚ └── deployment.py
17
+ β”œβ”€β”€ notebooks/ # Jupyter notebooks for exploration
18
+ β”œβ”€β”€ requirements.txt # Project dependencies
19
+ └── README.md # Project documentation
20
+ ```
21
+
22
+ ## Setup Instructions
23
+
24
+ 1. Create a virtual environment:
25
+ ```bash
26
+ python -m venv venv
27
+ source venv/bin/activate # On Windows: venv\Scripts\activate
28
+ ```
29
+
30
+ 2. Install dependencies:
31
+ ```bash
32
+ pip install -r requirements.txt
33
+ ```
34
+
35
+ 3. Run the training pipeline:
36
+ ```bash
37
+ python src/training.py
38
+ ```
39
+
40
+ ## Project Features
41
+
42
+ - Custom CNN architecture for robust digit recognition
43
+ - Data augmentation techniques
44
+ - Model evaluation and hyperparameter tuning
45
+ - Model deployment pipeline
46
+ - Performance monitoring
47
+
48
+ ## Learning Concepts Covered
49
+
50
+ 1. Data Preprocessing
51
+ - Data loading and cleaning
52
+ - Feature engineering
53
+ - Data augmentation
54
+
55
+ 2. Model Architecture
56
+ - Custom CNN design
57
+ - Layer configuration
58
+ - Activation functions
59
+
60
+ 3. Training Process
61
+ - Loss functions
62
+ - Optimizers
63
+ - Learning rate scheduling
64
+ - Early stopping
65
+
66
+ 4. Evaluation
67
+ - Metrics calculation
68
+ - Cross-validation
69
+ - Model comparison
70
+
71
+ 5. Deployment
72
+ - Model saving
73
+ - Inference pipeline
74
+ - Performance monitoring