Spaces:
Runtime error
Runtime error
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,74 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AI Model Training Project
|
2 |
+
|
3 |
+
This project demonstrates a complete machine learning workflow from data preparation to model deployment, using the MNIST dataset with an innovative approach to digit recognition.
|
4 |
+
|
5 |
+
## Project Structure
|
6 |
+
|
7 |
+
```
|
8 |
+
.
|
9 |
+
βββ data/ # Dataset storage
|
10 |
+
βββ models/ # Saved model files
|
11 |
+
βββ src/ # Source code
|
12 |
+
β βββ data_preparation.py
|
13 |
+
β βββ model.py
|
14 |
+
β βββ training.py
|
15 |
+
β βββ evaluation.py
|
16 |
+
β βββ deployment.py
|
17 |
+
βββ notebooks/ # Jupyter notebooks for exploration
|
18 |
+
βββ requirements.txt # Project dependencies
|
19 |
+
βββ README.md # Project documentation
|
20 |
+
```
|
21 |
+
|
22 |
+
## Setup Instructions
|
23 |
+
|
24 |
+
1. Create a virtual environment:
|
25 |
+
```bash
|
26 |
+
python -m venv venv
|
27 |
+
source venv/bin/activate # On Windows: venv\Scripts\activate
|
28 |
+
```
|
29 |
+
|
30 |
+
2. Install dependencies:
|
31 |
+
```bash
|
32 |
+
pip install -r requirements.txt
|
33 |
+
```
|
34 |
+
|
35 |
+
3. Run the training pipeline:
|
36 |
+
```bash
|
37 |
+
python src/training.py
|
38 |
+
```
|
39 |
+
|
40 |
+
## Project Features
|
41 |
+
|
42 |
+
- Custom CNN architecture for robust digit recognition
|
43 |
+
- Data augmentation techniques
|
44 |
+
- Model evaluation and hyperparameter tuning
|
45 |
+
- Model deployment pipeline
|
46 |
+
- Performance monitoring
|
47 |
+
|
48 |
+
## Learning Concepts Covered
|
49 |
+
|
50 |
+
1. Data Preprocessing
|
51 |
+
- Data loading and cleaning
|
52 |
+
- Feature engineering
|
53 |
+
- Data augmentation
|
54 |
+
|
55 |
+
2. Model Architecture
|
56 |
+
- Custom CNN design
|
57 |
+
- Layer configuration
|
58 |
+
- Activation functions
|
59 |
+
|
60 |
+
3. Training Process
|
61 |
+
- Loss functions
|
62 |
+
- Optimizers
|
63 |
+
- Learning rate scheduling
|
64 |
+
- Early stopping
|
65 |
+
|
66 |
+
4. Evaluation
|
67 |
+
- Metrics calculation
|
68 |
+
- Cross-validation
|
69 |
+
- Model comparison
|
70 |
+
|
71 |
+
5. Deployment
|
72 |
+
- Model saving
|
73 |
+
- Inference pipeline
|
74 |
+
- Performance monitoring
|