Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -3,10 +3,69 @@ import tensorflow as tf
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import io
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
MODEL_PATH = "https://huggingface.co/nivashuggingface/digit-recognition/resolve/main/saved_model"
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def preprocess_image(img):
|
12 |
"""Preprocess the drawn image for prediction"""
|
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import io
|
6 |
+
import os
|
7 |
+
import requests
|
8 |
+
import tempfile
|
9 |
|
10 |
+
# Function to download the model from Hugging Face
|
11 |
+
def download_model_from_hf(model_path, local_dir):
|
12 |
+
"""Download model files from Hugging Face"""
|
13 |
+
# Create a temporary directory to store the model
|
14 |
+
os.makedirs(local_dir, exist_ok=True)
|
15 |
+
|
16 |
+
# Extract the repository and file path from the URL
|
17 |
+
# Example URL: https://huggingface.co/nivashuggingface/digit-recognition/resolve/main/saved_model
|
18 |
+
parts = model_path.split('/')
|
19 |
+
repo_id = f"{parts[3]}/{parts[4]}"
|
20 |
+
file_path = '/'.join(parts[6:])
|
21 |
+
|
22 |
+
# Download the model files
|
23 |
+
api_url = f"https://huggingface.co/api/models/{repo_id}/revision/main/files/{file_path}"
|
24 |
+
response = requests.get(api_url)
|
25 |
+
|
26 |
+
if response.status_code == 200:
|
27 |
+
# Download the saved_model.pb file
|
28 |
+
saved_model_pb_url = f"https://huggingface.co/{repo_id}/resolve/main/{file_path}/saved_model.pb"
|
29 |
+
pb_response = requests.get(saved_model_pb_url)
|
30 |
+
if pb_response.status_code == 200:
|
31 |
+
with open(os.path.join(local_dir, "saved_model.pb"), "wb") as f:
|
32 |
+
f.write(pb_response.content)
|
33 |
+
|
34 |
+
# Download the variables directory
|
35 |
+
variables_dir = os.path.join(local_dir, "variables")
|
36 |
+
os.makedirs(variables_dir, exist_ok=True)
|
37 |
+
|
38 |
+
# Download variables.data-00000-of-00001
|
39 |
+
variables_url = f"https://huggingface.co/{repo_id}/resolve/main/{file_path}/variables/variables.data-00000-of-00001"
|
40 |
+
var_response = requests.get(variables_url)
|
41 |
+
if var_response.status_code == 200:
|
42 |
+
with open(os.path.join(variables_dir, "variables.data-00000-of-00001"), "wb") as f:
|
43 |
+
f.write(var_response.content)
|
44 |
+
|
45 |
+
# Download variables.index
|
46 |
+
index_url = f"https://huggingface.co/{repo_id}/resolve/main/{file_path}/variables/variables.index"
|
47 |
+
index_response = requests.get(index_url)
|
48 |
+
if index_response.status_code == 200:
|
49 |
+
with open(os.path.join(variables_dir, "variables.index"), "wb") as f:
|
50 |
+
f.write(index_response.content)
|
51 |
+
|
52 |
+
return True
|
53 |
+
else:
|
54 |
+
print(f"Failed to download model: {response.status_code}")
|
55 |
+
return False
|
56 |
+
|
57 |
+
# Create a temporary directory for the model
|
58 |
MODEL_PATH = "https://huggingface.co/nivashuggingface/digit-recognition/resolve/main/saved_model"
|
59 |
+
LOCAL_MODEL_DIR = os.path.join(tempfile.gettempdir(), "digit_recognition_model")
|
60 |
+
|
61 |
+
# Download the model if it doesn't exist locally
|
62 |
+
if not os.path.exists(os.path.join(LOCAL_MODEL_DIR, "saved_model.pb")):
|
63 |
+
print("Downloading model from Hugging Face...")
|
64 |
+
download_model_from_hf(MODEL_PATH, LOCAL_MODEL_DIR)
|
65 |
+
|
66 |
+
# Load the model from local directory
|
67 |
+
print(f"Loading model from {LOCAL_MODEL_DIR}")
|
68 |
+
model = tf.saved_model.load(LOCAL_MODEL_DIR)
|
69 |
|
70 |
def preprocess_image(img):
|
71 |
"""Preprocess the drawn image for prediction"""
|