import gradio as gr from gradio_client import Client import matplotlib.pyplot as plt import numpy as np import io from PIL import Image import base64 import os import requests from tenacity import retry, wait_exponential, stop_after_attempt # Load Hugging Face token from environment variable HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("Hugging Face token not found in environment variables.") @retry(wait=wait_exponential(multiplier=1, min=4, max=10), stop=stop_after_attempt(5)) def get_dynamic_endpoint(): """ Fetch the dynamic endpoint using the Hugging Face API. Returns: str: The current dynamic endpoint. """ api_url = "https://api.huggingface.co/space/duchaba/friendly-text-moderation" headers = {"Authorization": f"Bearer {HF_TOKEN}"} response = requests.get(api_url, headers=headers) response.raise_for_status() # Raise an error for bad status codes # Extract the endpoint from the response data = response.json() endpoint = data.get("url") if not endpoint: raise ValueError("Endpoint URL not found in the response.") return endpoint def moderate_text(text, safer_value): """ Moderate the given text using the Hugging Face API. Args: text (str): The text to be moderated. safer_value (float): The safer value to be used for moderation. Returns: tuple: A tuple containing the moderation result and the generated image. """ try: # Fetch the dynamic endpoint dynamic_endpoint = get_dynamic_endpoint() # Initialize the client with the dynamic endpoint client = Client(dynamic_endpoint, hf_token=HF_TOKEN) result = client.predict( text, safer_value, api_name="/censor_me" ) # Ensure the result contains the expected data base64_data = result.get('plot', '').split(',')[1] if 'plot' in result else None if not base64_data: raise ValueError("Expected plot data not found in the result.") # Decode base64 to bytes img_data = base64.b64decode(base64_data) # Convert bytes to PIL Image img = Image.open(io.BytesIO(img_data)) return result, img except Exception as e: # Log the error for debugging purposes print(f"Error occurred: {e}") return str(e), None # Define the Gradio interface demo = gr.Interface( fn=moderate_text, inputs=[ gr.Textbox(label="Enter Text:", placeholder="Type your text here...", lines=5), gr.Slider(minimum=0.005, maximum=0.1, value=0.005, label="Personalize Safer Value: (larger value is less safe)") ], outputs=[gr.Textbox(label="Moderated Text:", lines=5), gr.Image(type="pil", label="Moderation Pie Chart")], title="Friendly Text Moderator", description="Enter text to be moderated and adjust the safer value to see how it affects the moderation." ) # Customize the CSS custom_css = """ body { background-color: #f5f5f5; font-family: Arial, sans-serif; } .gradio-container { max-width: 800px; margin: auto; padding: 20px; background-color: white; border: 1px solid #ddd; border-radius: 8px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); } .gr-button { background-color: #4CAF50; color: white; } .gr-button:hover { background-color: #45a049; } """ # Add the custom CSS to the Gradio app demo.css = custom_css # Launch the app demo.launch()