Update Era_s20_updt.py
Browse files- Era_s20_updt.py +12 -14
Era_s20_updt.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
#assert t.__version__=='4.25.1', "Transformers version should be as specified"
|
4 |
|
5 |
|
6 |
import torch
|
@@ -25,7 +24,7 @@ import torch.nn.functional as F
|
|
25 |
|
26 |
torch.manual_seed(1)
|
27 |
|
28 |
-
|
29 |
|
30 |
# Supress some unnecessary warnings when loading the CLIPTextModel
|
31 |
logging.set_verbosity_error()
|
@@ -88,7 +87,7 @@ vae = vae.to(torch_device)
|
|
88 |
text_encoder = text_encoder.to(torch_device)
|
89 |
unet = unet.to(torch_device);
|
90 |
|
91 |
-
embeds_folder = Path('
|
92 |
file_names = [path.name for path in embeds_folder.glob('*') if path.is_file()]
|
93 |
print(file_names)
|
94 |
|
@@ -193,7 +192,7 @@ def get_output_embeds(input_embeddings):
|
|
193 |
def generate_with_embs_custom(text_embeddings,seed):
|
194 |
height = 512 # default height of Stable Diffusion
|
195 |
width = 512 # default width of Stable Diffusion
|
196 |
-
num_inference_steps =
|
197 |
guidance_scale = 7.5 # Scale for classifier-free guidance
|
198 |
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
199 |
batch_size = 1
|
@@ -242,7 +241,7 @@ def generate_with_embs_custom(text_embeddings,seed):
|
|
242 |
# ref_latent = pil_to_latent(ref_image)
|
243 |
|
244 |
## Guidance through Custom Loss Function
|
245 |
-
def custom_loss(latent):
|
246 |
error = F.mse_loss(0.5*latent,0.8*ref_latent)
|
247 |
return error
|
248 |
|
@@ -279,11 +278,11 @@ class Styles_paintings():
|
|
279 |
def generate_styles_with_custom_loss(self, image):
|
280 |
height = 512 # default height of Stable Diffusion
|
281 |
width = 512 # default width of Stable Diffusion
|
282 |
-
num_inference_steps =
|
283 |
guidance_scale = 8 #@param # Scale for classifier-free guidance
|
284 |
batch_size = 1
|
285 |
custom_loss_scale = 200 #@param
|
286 |
-
|
287 |
self.output_styles_with_custom_loss = []
|
288 |
#ref_image = Image.open('C:/Users/shivs/Downloads/ig.jpg').resize((512,512))
|
289 |
ref_latent = pil_to_latent(image)
|
@@ -344,7 +343,7 @@ class Styles_paintings():
|
|
344 |
#denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
345 |
|
346 |
# Calculate loss
|
347 |
-
loss = custom_loss(latents_x0) * custom_loss_scale
|
348 |
#loss = blue_loss(denoised_images) * blue_loss_scale
|
349 |
|
350 |
# Occasionally print it out
|
@@ -362,14 +361,13 @@ class Styles_paintings():
|
|
362 |
|
363 |
self.output_styles_with_custom_loss.append(latents_to_pil(latents)[0])
|
364 |
|
365 |
-
def generate_final_image(im1,in_prompt):
|
366 |
paintings = Styles_paintings(in_prompt)
|
367 |
paintings.generate_styles()
|
368 |
r_image = im1.resize((512,512))
|
369 |
print('image shape is',r_image.size)
|
370 |
paintings.generate_styles_with_custom_loss(r_image)
|
371 |
|
372 |
-
print(len(paintings.output_styles))
|
373 |
-
print(len(paintings.output_styles_with_custom_loss))
|
374 |
|
375 |
-
return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles[2]],[paintings.output_styles[3]],[paintings.output_styles[4]],[paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]],[paintings.output_styles_with_custom_loss[2]],[paintings.output_styles_with_custom_loss[3]],[paintings.output_styles_with_custom_loss[4]]
|
|
|
1 |
+
# import transformers as t
|
2 |
+
# assert t.__version__=='4.25.1', "Transformers version should be as specified"
|
|
|
3 |
|
4 |
|
5 |
import torch
|
|
|
24 |
|
25 |
torch.manual_seed(1)
|
26 |
|
27 |
+
if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
28 |
|
29 |
# Supress some unnecessary warnings when loading the CLIPTextModel
|
30 |
logging.set_verbosity_error()
|
|
|
87 |
text_encoder = text_encoder.to(torch_device)
|
88 |
unet = unet.to(torch_device);
|
89 |
|
90 |
+
embeds_folder = Path('C:/Users/shivs/Downloads/paintings_embed')
|
91 |
file_names = [path.name for path in embeds_folder.glob('*') if path.is_file()]
|
92 |
print(file_names)
|
93 |
|
|
|
192 |
def generate_with_embs_custom(text_embeddings,seed):
|
193 |
height = 512 # default height of Stable Diffusion
|
194 |
width = 512 # default width of Stable Diffusion
|
195 |
+
num_inference_steps = 10 # Number of denoising steps
|
196 |
guidance_scale = 7.5 # Scale for classifier-free guidance
|
197 |
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
198 |
batch_size = 1
|
|
|
241 |
# ref_latent = pil_to_latent(ref_image)
|
242 |
|
243 |
## Guidance through Custom Loss Function
|
244 |
+
def custom_loss(latent,ref_latent):
|
245 |
error = F.mse_loss(0.5*latent,0.8*ref_latent)
|
246 |
return error
|
247 |
|
|
|
278 |
def generate_styles_with_custom_loss(self, image):
|
279 |
height = 512 # default height of Stable Diffusion
|
280 |
width = 512 # default width of Stable Diffusion
|
281 |
+
num_inference_steps = 20 #@param # Number of denoising steps
|
282 |
guidance_scale = 8 #@param # Scale for classifier-free guidance
|
283 |
batch_size = 1
|
284 |
custom_loss_scale = 200 #@param
|
285 |
+
print('image shape there is',image.size)
|
286 |
self.output_styles_with_custom_loss = []
|
287 |
#ref_image = Image.open('C:/Users/shivs/Downloads/ig.jpg').resize((512,512))
|
288 |
ref_latent = pil_to_latent(image)
|
|
|
343 |
#denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
344 |
|
345 |
# Calculate loss
|
346 |
+
loss = custom_loss(latents_x0,ref_latent) * custom_loss_scale
|
347 |
#loss = blue_loss(denoised_images) * blue_loss_scale
|
348 |
|
349 |
# Occasionally print it out
|
|
|
361 |
|
362 |
self.output_styles_with_custom_loss.append(latents_to_pil(latents)[0])
|
363 |
|
364 |
+
def generate_final_image(im1,in_prompt="an oil painting of an baby girl with flowers in a park"):
|
365 |
paintings = Styles_paintings(in_prompt)
|
366 |
paintings.generate_styles()
|
367 |
r_image = im1.resize((512,512))
|
368 |
print('image shape is',r_image.size)
|
369 |
paintings.generate_styles_with_custom_loss(r_image)
|
370 |
|
371 |
+
#print(len(paintings.output_styles))
|
|
|
372 |
|
373 |
+
return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles[2]],[paintings.output_styles[3]],[paintings.output_styles[4]], [paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]],[paintings.output_styles_with_custom_loss[2]],[paintings.output_styles_with_custom_loss[3]],[paintings.output_styles_with_custom_loss[4]]
|