Spaces:
Sleeping
Sleeping
File size: 6,219 Bytes
33afc2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from sklearn.mixture import GaussianMixture
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from typing import Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import umap
def global_cluster_embeddings(
embeddings: np.ndarray,
dim: int,
n_neighbors: Optional[int] = None,
metric: str = "cosine",
) -> np.ndarray:
if n_neighbors is None:
n_neighbors = int((len(embeddings) - 1) ** 0.5)
return umap.UMAP(
n_neighbors=n_neighbors, n_components=dim, metric=metric
).fit_transform(embeddings)
def local_cluster_embeddings(
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
) -> np.ndarray:
return umap.UMAP(
n_neighbors=num_neighbors, n_components=dim, metric=metric
).fit_transform(embeddings)
def get_optimal_clusters(
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
) -> int:
max_clusters = min(max_clusters, len(embeddings))
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
gm = GaussianMixture(n_components=n, random_state=random_state)
gm.fit(embeddings)
bics.append(gm.bic(embeddings))
return n_clusters[np.argmin(bics)]
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
n_clusters = get_optimal_clusters(embeddings, random_state = 200)
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
gm.fit(embeddings)
probs = gm.predict_proba(embeddings)
labels = [np.where(prob > threshold)[0] for prob in probs]
return labels, n_clusters
def perform_clustering(
embeddings: np.ndarray,
dim: int,
threshold: float,
) -> List[np.ndarray]:
if len(embeddings) <= dim + 1:
return [np.array([0]) for _ in range(len(embeddings))]
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
global_clusters, n_global_clusters = GMM_cluster(
reduced_embeddings_global, threshold
)
all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
total_clusters = 0
for i in range(n_global_clusters):
global_cluster_embeddings_ = embeddings[
np.array([i in gc for gc in global_clusters])
]
if len(global_cluster_embeddings_) == 0:
continue
if len(global_cluster_embeddings_) <= dim + 1:
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
n_local_clusters = 1
else:
reduced_embeddings_local = local_cluster_embeddings(
global_cluster_embeddings_, dim
)
local_clusters, n_local_clusters = GMM_cluster(
reduced_embeddings_local, threshold
)
for j in range(n_local_clusters):
local_cluster_embeddings_ = global_cluster_embeddings_[
np.array([j in lc for lc in local_clusters])
]
indices = np.where(
(embeddings == local_cluster_embeddings_[:, None]).all(-1)
)[1]
for idx in indices:
all_local_clusters[idx] = np.append(
all_local_clusters[idx], j + total_clusters
)
total_clusters += n_local_clusters
return all_local_clusters
def embed(embd,texts):
text_embeddings = embd.embed_documents(texts)
text_embeddings_np = np.array(text_embeddings)
return text_embeddings_np
def embed_cluster_texts(embd,texts):
text_embeddings_np = embed(embd,texts) # Generate embeddings
cluster_labels = perform_clustering(
text_embeddings_np, 10, 0.1
)
df = pd.DataFrame() # Initialize a DataFrame to store the results
df["text"] = texts # Store original texts
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame
df["cluster"] = cluster_labels # Store cluster labels
return df
def fmt_txt(df: pd.DataFrame) -> str:
unique_txt = df["text"].tolist()
return "--- --- \n --- --- ".join(unique_txt)
def embed_cluster_summarize_texts(model,embd,
texts: List[str], level: int
) -> Tuple[pd.DataFrame, pd.DataFrame]:
df_clusters = embed_cluster_texts(embd,texts)
expanded_list = []
for index, row in df_clusters.iterrows():
for cluster in row["cluster"]:
expanded_list.append(
{"text": row["text"], "embd": row["embd"], "cluster": cluster}
)
expanded_df = pd.DataFrame(expanded_list)
all_clusters = expanded_df["cluster"].unique()
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
Tài liệu:
{context}
"""
prompt = ChatPromptTemplate.from_template(template)
chain = prompt | model | StrOutputParser()
summaries = []
for i in all_clusters:
df_cluster = expanded_df[expanded_df["cluster"] == i]
formatted_txt = fmt_txt(df_cluster)
summaries.append(chain.invoke({"context": formatted_txt}))
df_summary = pd.DataFrame(
{
"summaries": summaries,
"level": [level] * len(summaries),
"cluster": list(all_clusters),
}
)
return df_clusters, df_summary
def recursive_embed_cluster_summarize(model,embd,
texts: List[str], level: int = 1, n_levels: int = 3
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
results = {}
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)
results[level] = (df_clusters, df_summary)
unique_clusters = df_summary["cluster"].nunique()
if level < n_levels and unique_clusters > 1:
new_texts = df_summary["summaries"].tolist()
next_level_results = recursive_embed_cluster_summarize(model,embd,
new_texts, level + 1, n_levels
)
results.update(next_level_results)
return results |