Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
@@ -318,14 +318,13 @@ def format_docs(docs):
|
|
318 |
return "\n\n".join(doc.page_content for doc in docs)
|
319 |
|
320 |
@st.cache_resource
|
321 |
-
def compute_rag_chain(_model,
|
322 |
-
|
323 |
-
results = recursive_embed_cluster_summarize(model, embd, docs_texts, level=1, n_levels=3)
|
324 |
all_texts = docs_texts.copy()
|
325 |
for level in sorted(results.keys()):
|
326 |
summaries = results[level][1]["summaries"].tolist()
|
327 |
all_texts.extend(summaries)
|
328 |
-
vectorstore = Chroma.from_texts(texts=all_texts, embedding=
|
329 |
retriever = vectorstore.as_retriever()
|
330 |
template = """
|
331 |
Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
|
@@ -340,7 +339,7 @@ def compute_rag_chain(_model, embd, docs_texts):
|
|
340 |
rag_chain = (
|
341 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
342 |
| prompt
|
343 |
-
|
|
344 |
| StrOutputParser()
|
345 |
)
|
346 |
return rag_chain
|
|
|
318 |
return "\n\n".join(doc.page_content for doc in docs)
|
319 |
|
320 |
@st.cache_resource
|
321 |
+
def compute_rag_chain(_model, _embd, docs_texts):
|
322 |
+
results = recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
|
|
|
323 |
all_texts = docs_texts.copy()
|
324 |
for level in sorted(results.keys()):
|
325 |
summaries = results[level][1]["summaries"].tolist()
|
326 |
all_texts.extend(summaries)
|
327 |
+
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
|
328 |
retriever = vectorstore.as_retriever()
|
329 |
template = """
|
330 |
Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
|
|
|
339 |
rag_chain = (
|
340 |
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
341 |
| prompt
|
342 |
+
| _model
|
343 |
| StrOutputParser()
|
344 |
)
|
345 |
return rag_chain
|