Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,45 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
|
5 |
import torch.nn.functional as F
|
|
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
-
depth_estimator = pipeline(task="depth-estimation",
|
9 |
-
model="Intel/dpt-hybrid-midas")
|
10 |
|
11 |
def launch(input_image):
|
12 |
out = depth_estimator(input_image)
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
15 |
prediction = F.interpolate(
|
16 |
-
|
17 |
-
size=input_image.size[::-1],
|
18 |
mode="bicubic",
|
19 |
align_corners=False,
|
20 |
)
|
21 |
|
22 |
-
# normalize the prediction
|
23 |
output = prediction.squeeze().numpy()
|
24 |
formatted = (output * 255 / np.max(output)).astype("uint8")
|
25 |
depth = Image.fromarray(formatted)
|
26 |
return depth
|
27 |
|
28 |
-
iface = gr.Interface(
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
demo = gr.Blocks()
|
33 |
|
34 |
with demo:
|
35 |
gr.TabbedInterface(
|
36 |
[iface],
|
37 |
-
["
|
38 |
)
|
39 |
|
40 |
-
demo.launch(debug=True)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import torch
|
|
|
4 |
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
from PIL import Image
|
7 |
+
from transformers import pipeline
|
8 |
|
9 |
+
depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-hybrid-midas")
|
|
|
10 |
|
11 |
def launch(input_image):
|
12 |
out = depth_estimator(input_image)
|
13 |
|
14 |
+
predicted_depth = torch.tensor(out["predicted_depth"])
|
15 |
+
|
16 |
+
if len(predicted_depth.shape) == 2: # Если двумерен, добавляем оси
|
17 |
+
predicted_depth = predicted_depth.unsqueeze(0).unsqueeze(0)
|
18 |
+
|
19 |
prediction = F.interpolate(
|
20 |
+
predicted_depth,
|
21 |
+
size=input_image.size[::-1], # Порядок: (ширина, высота)
|
22 |
mode="bicubic",
|
23 |
align_corners=False,
|
24 |
)
|
25 |
|
|
|
26 |
output = prediction.squeeze().numpy()
|
27 |
formatted = (output * 255 / np.max(output)).astype("uint8")
|
28 |
depth = Image.fromarray(formatted)
|
29 |
return depth
|
30 |
|
31 |
+
iface = gr.Interface(
|
32 |
+
launch,
|
33 |
+
inputs=gr.Image(type="pil"),
|
34 |
+
outputs=gr.Image(type="pil"),
|
35 |
+
)
|
36 |
|
37 |
demo = gr.Blocks()
|
38 |
|
39 |
with demo:
|
40 |
gr.TabbedInterface(
|
41 |
[iface],
|
42 |
+
["Depth Estimation Interface"],
|
43 |
)
|
44 |
|
45 |
+
demo.launch(debug=True)
|