nktssk commited on
Commit
80f5255
·
verified ·
1 Parent(s): 782b02d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -64
app.py CHANGED
@@ -1,76 +1,34 @@
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- pipe2 = pipeline("automatic-speech-recognition", model="distil-whisper/distil-small.en")
5
- pipe3 = pipeline("automatic-speech-recognition", model="antony66/whisper-large-v3-russian")
6
 
7
- demo = gr.Blocks()
8
-
9
-
10
- def transcribe_speech_english(filepath):
11
- if filepath is None:
12
- gr.Warning("No audio found, please retry.")
13
- return ""
14
- output = pipe2(filepath)
15
- return output["text"]
16
-
17
-
18
- def transcribe_speech_russian(filepath):
19
- if filepath is None:
20
- gr.Warning("No audio found, please retry.")
21
- return ""
22
- output = pipe3(filepath)
23
- return output["text"]
24
-
25
-
26
- mic_transcribe_english = gr.Interface(
27
- fn=transcribe_speech_english,
28
- inputs=gr.Audio(sources="microphone",
29
- type="filepath"),
30
- outputs=gr.Textbox(label="Transcription",
31
- lines=3),
32
- allow_flagging="never")
33
-
34
-
35
- mic_transcribe_russian = gr.Interface(
36
- fn=transcribe_speech_russian,
37
- inputs=gr.Audio(sources="microphone",
38
- type="filepath"),
39
- outputs=gr.Textbox(label="Transcription",
40
- lines=3),
41
- allow_flagging="never")
42
-
43
-
44
- file_transcribe_english = gr.Interface(
45
- fn=transcribe_speech_english,
46
- inputs=gr.Audio(sources="upload",
47
- type="filepath"),
48
- outputs=gr.Textbox(label="Transcription",
49
- lines=3),
50
- allow_flagging="never",
51
- )
52
 
 
 
 
 
 
53
 
54
- file_transcribe_russian = gr.Interface(
55
- fn=transcribe_speech_russian,
56
- inputs=gr.Audio(sources="upload",
57
- type="filepath"),
58
- outputs=gr.Textbox(label="Transcription",
59
- lines=3),
60
- allow_flagging="never",
61
- )
62
 
 
63
 
64
  with demo:
65
  gr.TabbedInterface(
66
- [mic_transcribe_english,
67
- file_transcribe_english,
68
- mic_transcribe_russian,
69
- file_transcribe_russian],
70
- ["Transcribe Microphone English",
71
- "Transcribe Audio File English",
72
- "Transcribe Microphone Russian",
73
- "Transcribe Audio File Russian"],
74
  )
75
 
76
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
  from transformers import pipeline
4
 
5
+ def launch(input_image):
6
+ out = depth_estimator(input_image)
7
 
8
+ # resize the prediction
9
+ prediction = F.interpolate(
10
+ out["predicted_depth"].unsqueeze(1),
11
+ size=input_image.size[::-1],
12
+ mode="bicubic",
13
+ align_corners=False,
14
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # normalize the prediction
17
+ output = prediction.squeeze().numpy()
18
+ formatted = (output * 255 / np.max(output)).astype("uint8")
19
+ depth = Image.fromarray(formatted)
20
+ return depth
21
 
22
+ iface = gr.Interface(launch,
23
+ inputs=gr.Image(type='pil'),
24
+ outputs=gr.Image(type='pil'))
 
 
 
 
 
25
 
26
+ demo = gr.Blocks()
27
 
28
  with demo:
29
  gr.TabbedInterface(
30
+ [iface],
31
+ ["iface"],
 
 
 
 
 
 
32
  )
33
 
34
+ demo.launch(debug=True)