nldemo commited on
Commit
ecc6e6c
·
1 Parent(s): 8659056

Replace the template with a DIY text analysis application

Browse files
Files changed (2) hide show
  1. app.py +51 -149
  2. requirements.txt +2 -6
app.py CHANGED
@@ -1,154 +1,56 @@
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
-
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
-
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
+ from textblob import TextBlob
4
+
5
+ def analyze_text(text):
6
+ if not text:
7
+ return "Please enter some text to analyze.", 0, 0, 0
8
+
9
+ blob = TextBlob(text)
10
+
11
+ sentiment = blob.sentiment.polarity
12
+
13
+ word_count = len(text.split())
14
+ char_count = len(text)
15
+ avg_word_length = char_count / word_count
16
+
17
+ return {
18
+ "sentiment_score": round(sentiment, 2),
19
+ "word_count": word_count,
20
+ "character_count": char_count,
21
+ "avg_word_length": round(avg_word_length, 2),
22
+ }
23
+
24
+ with gr.Blocks() as demo:
25
+ gr.Markdown("# Text Analysis App")
26
+ gr.Markdown("Enter some text to analyze its sentiment and get basic statistics.")
27
+
28
+ with gr.Row():
29
+ text_input = gr.Textbox(
30
+ label="Input Text",
31
+ placeholder="Type your text here...",
32
+ lines=5,
33
+ )
34
+
35
+ with gr.Row():
36
+ analyze_button = gr.Button("Analyze")
37
+
38
+ with gr.Row():
39
+ sentiment_output = gr.Number(label="Sentiment Score (-1 to 1)")
40
+ word_count_output = gr.Number(label="Word Count")
41
+ char_count_output = gr.Number(label="Character Count")
42
+ avg_length_output = gr.Number(label="Average Word Length")
43
+
44
+ analyze_button.click(
45
+ fn=analyze_text,
46
+ inputs=text_input,
47
+ outputs=[
48
+ sentiment_output,
49
+ word_count_output,
50
+ char_count_output,
51
+ avg_length_output,
52
+ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  )
54
 
55
  if __name__ == "__main__":
56
+ demo.launch()
requirements.txt CHANGED
@@ -1,6 +1,2 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers
 
1
+ textblob
2
+ numpy