import gradio as gr import numpy as np from textblob import TextBlob def analyze_text(text): if not text: return "Please enter some text to analyze.", 0, 0, 0 blob = TextBlob(text) sentiment = blob.sentiment.polarity word_count = len(text.split()) char_count = len(text) avg_word_length = char_count / word_count return [ round(sentiment, 2), word_count, char_count, round(avg_word_length, 2), ] with gr.Blocks() as demo: gr.Markdown("# Text Analysis App") gr.Markdown("Enter some text to analyze its sentiment and get basic statistics.") with gr.Row(): text_input = gr.Textbox( label="Input Text", placeholder="Type your text here...", lines=5, ) with gr.Row(): analyze_button = gr.Button("Analyze") with gr.Row(): sentiment_output = gr.Number(label="Sentiment Score (-1 to 1)") word_count_output = gr.Number(label="Word Count") char_count_output = gr.Number(label="Character Count") avg_length_output = gr.Number(label="Average Word Length") analyze_button.click( fn=analyze_text, inputs=text_input, outputs=[ sentiment_output, word_count_output, char_count_output, avg_length_output, ] ) if __name__ == "__main__": demo.launch()