nmarafo commited on
Commit
3ae76eb
verified
1 Parent(s): eee8b06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -102
app.py CHANGED
@@ -1,16 +1,25 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
3
- import torch
4
  import os
 
 
 
 
 
 
 
5
 
6
- # Check CUDA availability
7
- print("CUDA available:", torch.cuda.is_available())
8
- print("CUDA version:", torch.version.cuda)
9
 
10
- # Load the Hugging Face token from secrets
11
- token = os.environ.get("HF_TOKEN")
12
 
13
- model_id = "google/shieldgemma-2b"
 
 
 
 
14
 
15
  # use quantization to lower GPU usage
16
  bnb_config = BitsAndBytesConfig(
@@ -25,109 +34,104 @@ model = AutoModelForCausalLM.from_pretrained(
25
  quantization_config=bnb_config,
26
  token=token
27
  )
 
 
 
 
28
 
29
- # Funci贸n para generar el prompt dependiendo del idioma seleccionado
30
- def generar_prompt(message, tipo_clasificacion, idioma):
31
- if idioma == "Espa帽ol":
32
- politicas = {
33
- "Contenido Peligroso": """
34
- * "No al contenido peligroso": El mensaje no debe contener ni buscar la generaci贸n de contenido que cause da帽o a uno mismo o a otros (por ejemplo, acceder o fabricar armas de fuego o explosivos, promoci贸n del terrorismo, instrucciones para el suicidio).
35
- """,
36
- "Acoso": """
37
- * "No al acoso": El mensaje no debe contener ni buscar la generaci贸n de contenido que sea malicioso, intimidante, que fomente el bullying o abusivo dirigido a otra persona (por ejemplo, amenazas f铆sicas, negaci贸n de eventos tr谩gicos, menosprecio a v铆ctimas de violencia).
38
- """,
39
- "Discurso de Odio": """
40
- * "No al discurso de odio": El mensaje no debe contener ni buscar la generaci贸n de contenido que ataque la identidad o atributos protegidos (por ejemplo, insultos raciales, promoci贸n de la discriminaci贸n, llamados a la violencia contra grupos protegidos) o que deshumanice, menosprecie o vilipendie por motivos de raza, etnia, religi贸n, discapacidad, edad, nacionalidad, estatus de veterano, orientaci贸n sexual, g茅nero, identidad de g茅nero, casta, u otro estatus protegido.
41
- """,
42
- "Contenido Sexual": """
43
- * "No al contenido sexual expl铆cito": El mensaje no debe contener ni buscar la generaci贸n de contenido que haga referencia a actos sexuales u otro contenido lascivo (por ejemplo, descripciones gr谩ficas sexuales, contenido destinado a causar excitaci贸n). Los t茅rminos m茅dicos o cient铆ficos relacionados con la anatom铆a humana o la educaci贸n sexual est谩n permitidos.
44
- """
45
- }
46
- else: # English
47
- politicas = {
48
- "Dangerous Content": """
49
- * "No Dangerous Content": The prompt shall not contain or seek generation of content that harms oneself and/or others (e.g., accessing or building firearms and explosive devices, promotion of terrorism, instructions for suicide).
50
- """,
51
- "Harassment": """
52
- * "No Harassment": The prompt shall not contain or seek generation of content that is malicious, intimidating, bullying, or abusive content targeting another individual (e.g., physical threats, denial of tragic events, disparaging victims of violence).
53
- """,
54
- "Hate Speech": """
55
- * "No Hate Speech": The prompt shall not contain or seek generation of content that targets identity and/or protected attributes (e.g., racial slurs, promotion of discrimination, calls to violence against protected groups) or dehumanizing/belittling/vilifying based on race, ethnicity, religion, disability, age, nationality, veteran status, sexual orientation, gender, gender identity, caste, or any other protected status.
56
- """,
57
- "Sexually Explicit Information": """
58
- * "No Sexually Explicit Information": The prompt shall not contain or seek generation of content that contains references to sexual acts or other lewd content (e.g., sexually graphic descriptions, content aimed at causing arousal). Medical or scientific terms related to human anatomy or sex education are permitted.
59
- """
60
- }
61
-
62
- # Formatear el prompt seg煤n el tipo de clasificaci贸n seleccionado
63
- politica_seguridad = politicas.get(tipo_clasificacion, "")
64
-
65
- if idioma == "Espa帽ol":
66
- prompt = f"""Eres un experto en pol铆ticas tratando de determinar si un mensaje del usuario
67
- viola las pol铆ticas de seguridad definidas.
68
- <inicio_turno>
69
- Pregunta del usuario: {message.strip()}
70
- <fin_turno>
71
- Nuestro principio de seguridad se define a continuaci贸n:
72
- {politica_seguridad.strip()}
73
- 驴La pregunta del usuario viola el principio anterior? Tu respuesta debe comenzar con
74
- 'S铆' o 'No'. Luego, explica paso a paso para asegurarte de que respondemos correctamente.
75
- """
76
- else: # Default to English
77
- prompt = f"""You are a policy expert trying to help determine whether a user prompt is in
78
- violation of the defined safety policies.
79
- <start_of_turn>
80
- Human Question: {message.strip()}
81
- <end_of_turn>
82
- Our safety principle is defined below:
83
- {politica_seguridad.strip()}
84
- Does the human question violate the above principle? Your answer must start with
85
- 'Yes' or 'No'. Then walk through step by step to be sure we answer correctly.
86
- """
87
-
88
- return prompt
89
-
90
- @spaces.GPU(duration=150)
91
- # Funci贸n para procesar la respuesta y clasificar seg煤n las pol铆ticas de seguridad
92
- def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, language, harm_type):
93
- prompt = generar_prompt(message, harm_type, language)
94
 
95
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)["input_ids"]
96
 
97
- with torch.no_grad():
98
- logits = model(**inputs).logits
99
 
100
- # Extraer los logits para los tokens 'Yes'/'No' en ingl茅s o 'S铆'/'No' en espa帽ol
101
- vocab = tokenizer.get_vocab()
102
- if language == "Espa帽ol":
103
- selected_logits = logits[0, -1, [vocab['S铆'], vocab['No']]]
104
- else:
105
- selected_logits = logits[0, -1, [vocab['Yes'], vocab['No']]]
 
 
106
 
107
- # Convertir los logits en una probabilidad con softmax
108
- probabilities = softmax(selected_logits, dim=0)
 
 
 
 
109
 
110
- # Devolver la probabilidad de 'S铆'/'Yes' y la respuesta generada
111
- score_yes = probabilities[0].item()
112
 
113
- if language == "Espa帽ol":
114
- response = f"Puntuaci贸n para 'S铆' (violaci贸n): {score_yes:.4f}"
115
- else:
116
- response = f"Score for 'Yes' (violation): {score_yes:.4f}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
- return response
119
 
120
- # Crear la interfaz de Gradio con selecci贸n de idioma y tipo de contenido
121
  demo = gr.ChatInterface(
122
- respond,
123
- additional_inputs=[
124
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
125
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
126
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
127
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
128
- gr.Dropdown(choices=["English", "Espa帽ol"], value="English", label="Idioma/Language"),
129
- gr.Dropdown(choices=["Dangerous Content", "Harassment", "Hate Speech", "Sexually Explicit Information"], value="Harassment", label="Harm Type")
130
- ],
 
 
 
 
 
131
  )
132
-
133
  demo.launch(debug=True)
 
1
  import gradio as gr
2
+ from datasets import load_dataset
3
+
4
  import os
5
+ import spaces
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
7
+ import torch
8
+ from threading import Thread
9
+ from sentence_transformers import SentenceTransformer
10
+ from datasets import load_dataset
11
+ import time
12
 
13
+ token = os.environ["HF_TOKEN"]
14
+ ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
 
15
 
16
+ dataset = load_dataset("not-lain/wikipedia",revision = "embedded")
 
17
 
18
+ data = dataset["train"]
19
+ data = data.add_faiss_index("embeddings") # column name that has the embeddings of the dataset
20
+
21
+
22
+ model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
23
 
24
  # use quantization to lower GPU usage
25
  bnb_config = BitsAndBytesConfig(
 
34
  quantization_config=bnb_config,
35
  token=token
36
  )
37
+ terminators = [
38
+ tokenizer.eos_token_id,
39
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
40
+ ]
41
 
42
+ SYS_PROMPT = """You are an assistant for answering questions.
43
+ You are given the extracted parts of a long document and a question. Provide a conversational answer.
44
+ If you don't know the answer, just say "I do not know." Don't make up an answer."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
 
 
46
 
 
 
47
 
48
+ def search(query: str, k: int = 3 ):
49
+ """a function that embeds a new query and returns the most probable results"""
50
+ embedded_query = ST.encode(query) # embed new query
51
+ scores, retrieved_examples = data.get_nearest_examples( # retrieve results
52
+ "embeddings", embedded_query, # compare our new embedded query with the dataset embeddings
53
+ k=k # get only top k results
54
+ )
55
+ return scores, retrieved_examples
56
 
57
+ def format_prompt(prompt,retrieved_documents,k):
58
+ """using the retrieved documents we will prompt the model to generate our responses"""
59
+ PROMPT = f"Question:{prompt}\nContext:"
60
+ for idx in range(k) :
61
+ PROMPT+= f"{retrieved_documents['text'][idx]}\n"
62
+ return PROMPT
63
 
 
 
64
 
65
+ @spaces.GPU(duration=150)
66
+ def talk(prompt,history):
67
+ k = 1 # number of retrieved documents
68
+ scores , retrieved_documents = search(prompt, k)
69
+ formatted_prompt = format_prompt(prompt,retrieved_documents,k)
70
+ formatted_prompt = formatted_prompt[:2000] # to avoid GPU OOM
71
+ messages = [{"role":"system","content":SYS_PROMPT},{"role":"user","content":formatted_prompt}]
72
+ # tell the model to generate
73
+ input_ids = tokenizer.apply_chat_template(
74
+ messages,
75
+ add_generation_prompt=True,
76
+ return_tensors="pt"
77
+ ).to(model.device)
78
+ outputs = model.generate(
79
+ input_ids,
80
+ max_new_tokens=1024,
81
+ eos_token_id=terminators,
82
+ do_sample=True,
83
+ temperature=0.6,
84
+ top_p=0.9,
85
+ )
86
+ streamer = TextIteratorStreamer(
87
+ tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
88
+ )
89
+ generate_kwargs = dict(
90
+ input_ids= input_ids,
91
+ streamer=streamer,
92
+ max_new_tokens=1024,
93
+ do_sample=True,
94
+ top_p=0.95,
95
+ temperature=0.75,
96
+ eos_token_id=terminators,
97
+ )
98
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
99
+ t.start()
100
+
101
+ outputs = []
102
+ for text in streamer:
103
+ outputs.append(text)
104
+ print(outputs)
105
+ yield "".join(outputs)
106
+
107
+
108
+ TITLE = "# RAG"
109
+
110
+ DESCRIPTION = """
111
+ A rag pipeline with a chatbot feature
112
+ Resources used to build this project :
113
+ * embedding model : https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1
114
+ * dataset : https://huggingface.co/datasets/not-lain/wikipedia
115
+ * faiss docs : https://huggingface.co/docs/datasets/v2.18.0/en/package_reference/main_classes#datasets.Dataset.add_faiss_index
116
+ * chatbot : https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
117
+ * Full documentation : https://huggingface.co/blog/not-lain/rag-chatbot-using-llama3
118
+ """
119
 
 
120
 
 
121
  demo = gr.ChatInterface(
122
+ fn=talk,
123
+ chatbot=gr.Chatbot(
124
+ show_label=True,
125
+ show_share_button=True,
126
+ show_copy_button=True,
127
+ likeable=True,
128
+ layout="bubble",
129
+ bubble_full_width=False,
130
+ ),
131
+ theme="Soft",
132
+ examples=[["what's anarchy ? "]],
133
+ title=TITLE,
134
+ description=DESCRIPTION,
135
+
136
  )
 
137
  demo.launch(debug=True)