Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,110 +1,107 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Cargar el modelo cuantizado y el tokenizer
|
|
|
|
|
7 |
model = AutoModelForCausalLM.from_pretrained(
|
8 |
-
|
9 |
-
|
10 |
-
device_map=
|
|
|
|
|
11 |
)
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
Our safety principle is defined below:
|
74 |
-
|
75 |
-
{politica_seguridad.strip()}
|
76 |
-
|
77 |
-
Does the human question violate the above principle? Your answer must start with
|
78 |
-
'Yes' or 'No'. Then walk through step by step to be sure we answer correctly.
|
79 |
-
"""
|
80 |
-
|
81 |
-
return prompt
|
82 |
-
|
83 |
-
# Funci贸n para procesar la respuesta y clasificar seg煤n las pol铆ticas de seguridad
|
84 |
-
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, language, harm_type):
|
85 |
-
prompt = generar_prompt(message, harm_type, language)
|
86 |
-
|
87 |
-
# Tokenizar el mensaje de entrada
|
88 |
-
input_ids = tokenizer(prompt, return_tensors="pt").to(model.device)["input_ids"]
|
89 |
-
|
90 |
-
# Generar la salida con el modelo cuantizado
|
91 |
-
outputs = model.generate(input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p)
|
92 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
93 |
-
|
94 |
-
return response
|
95 |
-
|
96 |
-
# Crear la interfaz de Gradio con selecci贸n de idioma y tipo de contenido
|
97 |
demo = gr.ChatInterface(
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
|
|
|
109 |
if __name__ == "__main__":
|
110 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
3 |
import torch
|
4 |
+
from threading import Thread
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Cargar el token de Hugging Face desde los secretos
|
8 |
+
token = os.environ["HF_TOKEN"]
|
9 |
+
|
10 |
+
# Configurar la cuantizaci贸n con bitsandbytes para reducir el uso de memoria
|
11 |
+
bnb_config = BitsAndBytesConfig(
|
12 |
+
load_in_4bit=True,
|
13 |
+
bnb_4bit_use_double_quant=True,
|
14 |
+
bnb_4bit_quant_type="nf4",
|
15 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
16 |
+
)
|
17 |
|
18 |
+
# Cargar el modelo cuantizado y el tokenizer
|
19 |
+
model_id = "PrunaAI/google-shieldgemma-2b-bnb-4bit-smashed"
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
21 |
model = AutoModelForCausalLM.from_pretrained(
|
22 |
+
model_id,
|
23 |
+
torch_dtype=torch.bfloat16,
|
24 |
+
device_map="auto",
|
25 |
+
quantization_config=bnb_config,
|
26 |
+
token=token
|
27 |
)
|
28 |
+
|
29 |
+
# Definir terminadores de secuencia
|
30 |
+
terminators = [
|
31 |
+
tokenizer.eos_token_id,
|
32 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
33 |
+
]
|
34 |
+
|
35 |
+
# Mensaje del sistema (system message)
|
36 |
+
SYS_PROMPT = """Eres un asistente que responde preguntas de forma conversacional.
|
37 |
+
Se te proporciona una pregunta y contexto adicional. Proporciona una respuesta clara y precisa.
|
38 |
+
Si no sabes la respuesta, simplemente di "No lo s茅". No inventes una respuesta."""
|
39 |
+
|
40 |
+
# Funci贸n principal para manejar la conversaci贸n
|
41 |
+
def talk(prompt, history):
|
42 |
+
formatted_prompt = f"Pregunta: {prompt}\nContexto: {SYS_PROMPT}"
|
43 |
+
formatted_prompt = formatted_prompt[:2000] # Limitar a 2000 caracteres para evitar problemas de OOM
|
44 |
+
|
45 |
+
# Preparar los mensajes para el modelo
|
46 |
+
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
|
47 |
+
|
48 |
+
# Tokenizar el prompt
|
49 |
+
input_ids = tokenizer.apply_chat_template(
|
50 |
+
messages,
|
51 |
+
add_generation_prompt=True,
|
52 |
+
return_tensors="pt"
|
53 |
+
).to(model.device)
|
54 |
+
|
55 |
+
# Configurar el generador de texto con streaming
|
56 |
+
streamer = TextIteratorStreamer(
|
57 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
58 |
+
)
|
59 |
+
|
60 |
+
# Configurar los argumentos para la generaci贸n
|
61 |
+
generate_kwargs = dict(
|
62 |
+
input_ids=input_ids,
|
63 |
+
streamer=streamer,
|
64 |
+
max_new_tokens=512, # Reducido para evitar OOM
|
65 |
+
do_sample=True,
|
66 |
+
top_p=0.95,
|
67 |
+
temperature=0.75,
|
68 |
+
eos_token_id=terminators,
|
69 |
+
)
|
70 |
+
|
71 |
+
# Iniciar el hilo para la generaci贸n de texto
|
72 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
73 |
+
t.start()
|
74 |
+
|
75 |
+
# Recoger los resultados de forma incremental
|
76 |
+
outputs = []
|
77 |
+
for text in streamer:
|
78 |
+
outputs.append(text)
|
79 |
+
yield "".join(outputs)
|
80 |
+
|
81 |
+
|
82 |
+
# Configuraci贸n de la interfaz de Gradio
|
83 |
+
TITLE = "# Chatbot de Respuestas"
|
84 |
+
DESCRIPTION = """
|
85 |
+
Este chatbot responde preguntas de manera conversacional usando un modelo cuantizado.
|
86 |
+
"""
|
87 |
+
|
88 |
+
# Crear la interfaz del chatbot en Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
demo = gr.ChatInterface(
|
90 |
+
fn=talk,
|
91 |
+
chatbot=gr.Chatbot(
|
92 |
+
show_label=True,
|
93 |
+
show_share_button=True,
|
94 |
+
show_copy_button=True,
|
95 |
+
likeable=True,
|
96 |
+
layout="bubble",
|
97 |
+
bubble_full_width=False,
|
98 |
+
),
|
99 |
+
theme="Soft",
|
100 |
+
examples=[["驴Qu茅 es la anarqu铆a?"]],
|
101 |
+
title=TITLE,
|
102 |
+
description=DESCRIPTION,
|
103 |
)
|
104 |
|
105 |
+
# Lanzar la interfaz de Gradio
|
106 |
if __name__ == "__main__":
|
107 |
+
demo.launch(debug=True)
|