Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,31 +6,34 @@ import torch
|
|
6 |
# Configuraci贸n del modelo y tokenizer
|
7 |
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
|
8 |
adapter = "nmarafo/Mistral-7B-Instruct-v0.2-TrueFalse-Feedback-GPTQ"
|
|
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, return_token_type_ids=False)
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
11 |
-
model = AutoPeftModelForCausalLM.from_pretrained(
|
12 |
|
13 |
-
def
|
14 |
system_message = "Analyze the question, the expected answer, and the student's response. Determine if the student's answer is conceptually correct in relation to the expected answer, regardless of the exact wording. Return True if the student's answer is correct or False otherwise. Add a brief comment explaining the rationale behind the answer being correct or incorrect."
|
15 |
prompt = f"{system_message}\n\nQuestion: {question}\nExpected Answer: {best_answer}\nStudent Answer: {student_answer}"
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
output = model.generate(input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
19 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
20 |
return response
|
21 |
|
22 |
-
# Crear la interfaz de usuario
|
23 |
st.title("Evaluador de Respuestas con GPTQ")
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# Bot贸n de env铆o para el formulario
|
31 |
-
submitted = st.form_submit_button("Evaluar")
|
32 |
|
33 |
-
if
|
34 |
-
|
|
|
35 |
st.write("Respuesta del Modelo:", response)
|
36 |
|
|
|
6 |
# Configuraci贸n del modelo y tokenizer
|
7 |
model_id = "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ"
|
8 |
adapter = "nmarafo/Mistral-7B-Instruct-v0.2-TrueFalse-Feedback-GPTQ"
|
9 |
+
|
10 |
+
# Carga el modelo y el tokenizer
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, return_token_type_ids=False)
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
+
model = AutoPeftModelForCausalLM.from_pretrained(adapter, low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.float16, device_map="cuda")
|
14 |
|
15 |
+
def generate_prompt(question, best_answer, student_answer):
|
16 |
system_message = "Analyze the question, the expected answer, and the student's response. Determine if the student's answer is conceptually correct in relation to the expected answer, regardless of the exact wording. Return True if the student's answer is correct or False otherwise. Add a brief comment explaining the rationale behind the answer being correct or incorrect."
|
17 |
prompt = f"{system_message}\n\nQuestion: {question}\nExpected Answer: {best_answer}\nStudent Answer: {student_answer}"
|
18 |
+
return prompt
|
19 |
+
|
20 |
+
def generate_response(prompt):
|
21 |
+
input_ids = tokenizer(prompt, return_tensors='pt').input_ids.cuda()
|
22 |
output = model.generate(input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
|
23 |
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
24 |
return response
|
25 |
|
26 |
+
# Crear la interfaz de usuario con Streamlit
|
27 |
st.title("Evaluador de Respuestas con GPTQ")
|
28 |
|
29 |
+
with st.form(key='eval_form'):
|
30 |
+
question = st.text_input("Pregunta")
|
31 |
+
best_answer = st.text_input("Mejor Respuesta")
|
32 |
+
student_answer = st.text_input("Respuesta del Estudiante")
|
33 |
+
submit_button = st.form_submit_button(label='Evaluar')
|
|
|
|
|
34 |
|
35 |
+
if submit_button:
|
36 |
+
prompt = generate_prompt(question, best_answer, student_answer)
|
37 |
+
response = generate_response(prompt)
|
38 |
st.write("Respuesta del Modelo:", response)
|
39 |
|