Spaces:
Running
Running
Nikhil Mudhalwadkar
commited on
Commit
·
10a6c3a
1
Parent(s):
7b96f60
update gradio
Browse files- app.py +46 -31
- app/__init__.py +0 -0
- app/config.py +0 -3
- app/consume_data/__init__.py +0 -0
- app/consume_data/consume_data.py +0 -165
- app/data.py +0 -69
- app/discriminator/__init__.py +0 -0
- app/discriminator/patch_gan.py +0 -137
- app/generator/__init__.py +0 -0
- app/generator/unetGen.py +0 -174
- app/generator/unetParts.py +0 -106
- app/model/__init__.py +0 -0
- app/model/lit_model.py +0 -145
- app/scratch.py +0 -34
app.py
CHANGED
@@ -5,7 +5,7 @@ import matplotlib
|
|
5 |
import torch
|
6 |
from pytorch_lightning.utilities.types import EPOCH_OUTPUT
|
7 |
|
8 |
-
matplotlib.use(
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
import albumentations as A
|
@@ -13,13 +13,17 @@ import albumentations.pytorch as al_pytorch
|
|
13 |
import torchvision
|
14 |
from pl_bolts.models.gans import Pix2Pix
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
""" Class """
|
17 |
|
18 |
|
19 |
class OverpoweredPix2Pix(Pix2Pix):
|
20 |
-
|
21 |
def validation_step(self, batch, batch_idx):
|
22 |
-
"""
|
23 |
real, condition = batch
|
24 |
with torch.no_grad():
|
25 |
loss = self._disc_step(real, condition)
|
@@ -28,33 +32,36 @@ class OverpoweredPix2Pix(Pix2Pix):
|
|
28 |
loss = self._gen_step(real, condition)
|
29 |
self.log("val_generator_loss", loss)
|
30 |
|
31 |
-
return {
|
32 |
-
'sketch': real,
|
33 |
-
'colour': condition
|
34 |
-
}
|
35 |
|
36 |
-
def validation_epoch_end(
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
with torch.no_grad():
|
40 |
gen_coloured = self.gen(sketch)
|
41 |
grid_image = torchvision.utils.make_grid(
|
42 |
[
|
43 |
-
sketch[0],
|
|
|
|
|
44 |
],
|
45 |
-
normalize=True
|
46 |
)
|
47 |
self.logger.experiment.add_image(
|
48 |
-
f
|
49 |
-
grid_image,
|
50 |
-
self.current_epoch
|
51 |
)
|
52 |
|
53 |
|
54 |
""" Load the model """
|
55 |
# train_64_val_16_patchgan_1val_plbolts_model_chkpt = "model/lightning_bolts_model/modified_path_gan.ckpt"
|
56 |
-
train_64_val_16_plbolts_model_chkpt =
|
57 |
-
|
|
|
|
|
|
|
|
|
58 |
# model_checkpoint_path = "model/pix2pix_lightning_model/version_0/checkpoints/epoch=199-step=355600.ckpt"
|
59 |
# model_checkpoint_path = "model/pix2pix_lightning_model/gen.pth"
|
60 |
|
@@ -72,18 +79,20 @@ train_16_val_1_plbolts_model.eval()
|
|
72 |
|
73 |
|
74 |
def predict(img: Image, type_of_model: str):
|
75 |
-
"""
|
76 |
# transform img
|
77 |
image = np.asarray(img)
|
78 |
# use on inference
|
79 |
-
inference_transform = A.Compose(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
87 |
|
88 |
# Choose model
|
89 |
if type_of_model == "train batch size 16, val batch size 1":
|
@@ -113,7 +122,7 @@ model_input = gr.inputs.Radio(
|
|
113 |
"train batch size 64, val batch size 16",
|
114 |
"train batch size 64, val batch size 16, patch gan has 1 output score instead of 16*16",
|
115 |
],
|
116 |
-
label="Type of Pix2Pix model to use : "
|
117 |
)
|
118 |
image_input = gr.inputs.Image(type="pil")
|
119 |
img_examples = [
|
@@ -132,13 +141,17 @@ with gr.Blocks() as demo:
|
|
132 |
gr.Markdown(" There are three Pix2Pix models in this example:")
|
133 |
gr.Markdown(" 1. Training batch size is 16 , validation is 1")
|
134 |
gr.Markdown(" 2. Training batch size is 64 , validation is 16")
|
135 |
-
gr.Markdown(
|
136 |
-
|
|
|
|
|
137 |
with gr.Tabs():
|
138 |
with gr.TabItem("tr_16_val_1"):
|
139 |
with gr.Row():
|
140 |
image_input1 = gr.inputs.Image(type="pil")
|
141 |
-
image_output1 = gr.outputs.Image(
|
|
|
|
|
142 |
colour_1 = gr.Button("Colour it!")
|
143 |
gr.Examples(
|
144 |
examples=img_examples,
|
@@ -149,7 +162,9 @@ with gr.Blocks() as demo:
|
|
149 |
with gr.TabItem("tr_64_val_14"):
|
150 |
with gr.Row():
|
151 |
image_input2 = gr.inputs.Image(type="pil")
|
152 |
-
image_output2 = gr.outputs.Image(
|
|
|
|
|
153 |
colour_2 = gr.Button("Colour it!")
|
154 |
with gr.Row():
|
155 |
gr.Examples(
|
|
|
5 |
import torch
|
6 |
from pytorch_lightning.utilities.types import EPOCH_OUTPUT
|
7 |
|
8 |
+
matplotlib.use("Agg")
|
9 |
import numpy as np
|
10 |
from PIL import Image
|
11 |
import albumentations as A
|
|
|
13 |
import torchvision
|
14 |
from pl_bolts.models.gans import Pix2Pix
|
15 |
|
16 |
+
# Hack for spaces
|
17 |
+
import os
|
18 |
+
os.system("pip uninstall -y gradio")
|
19 |
+
os.system("pip install -r requirements.txt")
|
20 |
+
|
21 |
""" Class """
|
22 |
|
23 |
|
24 |
class OverpoweredPix2Pix(Pix2Pix):
|
|
|
25 |
def validation_step(self, batch, batch_idx):
|
26 |
+
"""Validation step"""
|
27 |
real, condition = batch
|
28 |
with torch.no_grad():
|
29 |
loss = self._disc_step(real, condition)
|
|
|
32 |
loss = self._gen_step(real, condition)
|
33 |
self.log("val_generator_loss", loss)
|
34 |
|
35 |
+
return {"sketch": real, "colour": condition}
|
|
|
|
|
|
|
36 |
|
37 |
+
def validation_epoch_end(
|
38 |
+
self, outputs: Union[EPOCH_OUTPUT, List[EPOCH_OUTPUT]]
|
39 |
+
) -> None:
|
40 |
+
sketch = outputs[0]["sketch"]
|
41 |
+
colour = outputs[0]["colour"]
|
42 |
with torch.no_grad():
|
43 |
gen_coloured = self.gen(sketch)
|
44 |
grid_image = torchvision.utils.make_grid(
|
45 |
[
|
46 |
+
sketch[0],
|
47 |
+
colour[0],
|
48 |
+
gen_coloured[0],
|
49 |
],
|
50 |
+
normalize=True,
|
51 |
)
|
52 |
self.logger.experiment.add_image(
|
53 |
+
f"Image Grid {str(self.current_epoch)}", grid_image, self.current_epoch
|
|
|
|
|
54 |
)
|
55 |
|
56 |
|
57 |
""" Load the model """
|
58 |
# train_64_val_16_patchgan_1val_plbolts_model_chkpt = "model/lightning_bolts_model/modified_path_gan.ckpt"
|
59 |
+
train_64_val_16_plbolts_model_chkpt = (
|
60 |
+
"model/lightning_bolts_model/epoch=99-step=44600.ckpt"
|
61 |
+
)
|
62 |
+
train_16_val_1_plbolts_model_chkpt = (
|
63 |
+
"model/lightning_bolts_model/epoch=99-step=89000.ckpt"
|
64 |
+
)
|
65 |
# model_checkpoint_path = "model/pix2pix_lightning_model/version_0/checkpoints/epoch=199-step=355600.ckpt"
|
66 |
# model_checkpoint_path = "model/pix2pix_lightning_model/gen.pth"
|
67 |
|
|
|
79 |
|
80 |
|
81 |
def predict(img: Image, type_of_model: str):
|
82 |
+
"""Create predictions"""
|
83 |
# transform img
|
84 |
image = np.asarray(img)
|
85 |
# use on inference
|
86 |
+
inference_transform = A.Compose(
|
87 |
+
[
|
88 |
+
A.Resize(width=256, height=256),
|
89 |
+
A.Normalize(
|
90 |
+
mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0
|
91 |
+
),
|
92 |
+
al_pytorch.ToTensorV2(),
|
93 |
+
]
|
94 |
+
)
|
95 |
+
inference_img = inference_transform(image=image)["image"].unsqueeze(0)
|
96 |
|
97 |
# Choose model
|
98 |
if type_of_model == "train batch size 16, val batch size 1":
|
|
|
122 |
"train batch size 64, val batch size 16",
|
123 |
"train batch size 64, val batch size 16, patch gan has 1 output score instead of 16*16",
|
124 |
],
|
125 |
+
label="Type of Pix2Pix model to use : ",
|
126 |
)
|
127 |
image_input = gr.inputs.Image(type="pil")
|
128 |
img_examples = [
|
|
|
141 |
gr.Markdown(" There are three Pix2Pix models in this example:")
|
142 |
gr.Markdown(" 1. Training batch size is 16 , validation is 1")
|
143 |
gr.Markdown(" 2. Training batch size is 64 , validation is 16")
|
144 |
+
gr.Markdown(
|
145 |
+
" 3. PatchGAN is changed, 1 value only instead of 16*16 ;"
|
146 |
+
"training batch size is 64 , validation is 16"
|
147 |
+
)
|
148 |
with gr.Tabs():
|
149 |
with gr.TabItem("tr_16_val_1"):
|
150 |
with gr.Row():
|
151 |
image_input1 = gr.inputs.Image(type="pil")
|
152 |
+
image_output1 = gr.outputs.Image(
|
153 |
+
type="pil",
|
154 |
+
)
|
155 |
colour_1 = gr.Button("Colour it!")
|
156 |
gr.Examples(
|
157 |
examples=img_examples,
|
|
|
162 |
with gr.TabItem("tr_64_val_14"):
|
163 |
with gr.Row():
|
164 |
image_input2 = gr.inputs.Image(type="pil")
|
165 |
+
image_output2 = gr.outputs.Image(
|
166 |
+
type="pil",
|
167 |
+
)
|
168 |
colour_2 = gr.Button("Colour it!")
|
169 |
with gr.Row():
|
170 |
gr.Examples(
|
app/__init__.py
DELETED
File without changes
|
app/config.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
num_workers = 4
|
2 |
-
train_batch_size = 32
|
3 |
-
val_batch_size = 1
|
|
|
|
|
|
|
|
app/consume_data/__init__.py
DELETED
File without changes
|
app/consume_data/consume_data.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
-
from typing import List, Optional
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from torchvision import transforms
|
7 |
-
import albumentations as A
|
8 |
-
import numpy as np
|
9 |
-
import albumentations.pytorch as al_pytorch
|
10 |
-
from typing import Dict, Tuple
|
11 |
-
from app import config
|
12 |
-
import pytorch_lightning as pl
|
13 |
-
|
14 |
-
torch.__version__
|
15 |
-
|
16 |
-
|
17 |
-
class AnimeDataset(torch.utils.data.Dataset):
|
18 |
-
""" Sketchs and Colored Image dataset """
|
19 |
-
|
20 |
-
def __init__(self, imgs_path: List[str], transforms: transforms.Compose) -> None:
|
21 |
-
""" Set the transforms and file path """
|
22 |
-
self.list_files = imgs_path
|
23 |
-
self.transform = transforms
|
24 |
-
|
25 |
-
def __len__(self) -> int:
|
26 |
-
""" Should return number of files """
|
27 |
-
return len(self.list_files)
|
28 |
-
|
29 |
-
def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
30 |
-
""" Get image and mask by index """
|
31 |
-
# read image file
|
32 |
-
img_file = self.list_files[index]
|
33 |
-
# img_path = os.path.join(self.root_dir, img_file)
|
34 |
-
image = np.array(Image.open(img_file))
|
35 |
-
|
36 |
-
# divide image into sketchs and colored_imgs, right is sketch and left is colored images
|
37 |
-
sketchs = image[:, image.shape[1] // 2:, :]
|
38 |
-
colored_imgs = image[:, :image.shape[1] // 2, :]
|
39 |
-
|
40 |
-
# data augmentation on both sketchs and colored_imgs
|
41 |
-
augmentations = self.transform.both_transform(image=sketchs, image0=colored_imgs)
|
42 |
-
sketchs, colored_imgs = augmentations['image'], augmentations['image0']
|
43 |
-
|
44 |
-
# conduct data augmentation respectively
|
45 |
-
sketchs = self.transform.transform_only_input(image=sketchs)['image']
|
46 |
-
colored_imgs = self.transform.transform_only_mask(image=colored_imgs)['image']
|
47 |
-
return sketchs, colored_imgs
|
48 |
-
|
49 |
-
|
50 |
-
# Data Augmentation
|
51 |
-
class Transforms:
|
52 |
-
def __init__(self):
|
53 |
-
# use on both sketchs and colored images
|
54 |
-
self.both_transform = A.Compose([
|
55 |
-
A.Resize(width=256, height=256),
|
56 |
-
A.HorizontalFlip(p=.5)
|
57 |
-
], additional_targets={'image0': 'image'})
|
58 |
-
|
59 |
-
# use on sketchs only
|
60 |
-
self.transform_only_input = A.Compose([
|
61 |
-
A.ColorJitter(p=.1),
|
62 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
63 |
-
al_pytorch.ToTensorV2(),
|
64 |
-
])
|
65 |
-
|
66 |
-
# use on colored images
|
67 |
-
self.transform_only_mask = A.Compose([
|
68 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
69 |
-
al_pytorch.ToTensorV2(),
|
70 |
-
])
|
71 |
-
|
72 |
-
|
73 |
-
class Transforms_v1:
|
74 |
-
""" Class to hold transforms """
|
75 |
-
|
76 |
-
def __init__(self):
|
77 |
-
# use on both sketchs and colored images
|
78 |
-
self.resize_572 = A.Compose([
|
79 |
-
A.Resize(width=572, height=572)
|
80 |
-
])
|
81 |
-
|
82 |
-
self.resize_388 = A.Compose([
|
83 |
-
A.Resize(width=388, height=388)
|
84 |
-
])
|
85 |
-
|
86 |
-
self.resize_256 = A.Compose([
|
87 |
-
A.Resize(width=256, height=256)
|
88 |
-
])
|
89 |
-
|
90 |
-
# use on sketchs only
|
91 |
-
self.transform_only_input = A.Compose([
|
92 |
-
# A.ColorJitter(p=.1),
|
93 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
94 |
-
al_pytorch.ToTensorV2(),
|
95 |
-
])
|
96 |
-
|
97 |
-
# use on colored images
|
98 |
-
self.transform_only_mask = A.Compose([
|
99 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
100 |
-
al_pytorch.ToTensorV2(),
|
101 |
-
])
|
102 |
-
|
103 |
-
|
104 |
-
class AnimeSketchDataModule(pl.LightningDataModule):
|
105 |
-
""" Class to hold the Anime sketch Data"""
|
106 |
-
|
107 |
-
def __init__(
|
108 |
-
self,
|
109 |
-
data_dir: str,
|
110 |
-
train_folder_name: str = "train/",
|
111 |
-
val_folder_name: str = "val/",
|
112 |
-
train_batch_size: int = config.train_batch_size,
|
113 |
-
val_batch_size: int = config.val_batch_size,
|
114 |
-
train_num_images: int = 0,
|
115 |
-
val_num_images: int = 0,
|
116 |
-
):
|
117 |
-
super().__init__()
|
118 |
-
self.val_dataset = None
|
119 |
-
self.train_dataset = None
|
120 |
-
self.data_dir: str = data_dir
|
121 |
-
# Set train and val images folder
|
122 |
-
train_path: str = f"{self.data_dir}{train_folder_name}/"
|
123 |
-
train_images: List[str] = [f"{train_path}{x}" for x in os.listdir(train_path)]
|
124 |
-
val_path: str = f"{self.data_dir}{val_folder_name}"
|
125 |
-
val_images: List[str] = [f"{val_path}{x}" for x in os.listdir(val_path)]
|
126 |
-
#
|
127 |
-
self.train_images = train_images[:train_num_images] if train_num_images else train_images
|
128 |
-
self.val_images = val_images[:val_num_images] if val_num_images else val_images
|
129 |
-
#
|
130 |
-
self.train_batch_size = train_batch_size
|
131 |
-
self.val_batch_size = val_batch_size
|
132 |
-
|
133 |
-
def set_datasets(self) -> None:
|
134 |
-
""" Get the train and test datasets """
|
135 |
-
self.train_dataset = AnimeDataset(
|
136 |
-
imgs_path=self.train_images,
|
137 |
-
transforms=Transforms()
|
138 |
-
)
|
139 |
-
self.val_dataset = AnimeDataset(
|
140 |
-
imgs_path=self.val_images,
|
141 |
-
transforms=Transforms()
|
142 |
-
)
|
143 |
-
print("The train test dataset lengths are : ", len(self.train_dataset), len(self.val_dataset))
|
144 |
-
return None
|
145 |
-
|
146 |
-
def setup(self, stage: Optional[str] = None) -> None:
|
147 |
-
self.set_datasets()
|
148 |
-
|
149 |
-
def train_dataloader(self):
|
150 |
-
return torch.utils.data.DataLoader(
|
151 |
-
self.train_dataset,
|
152 |
-
batch_size=self.train_batch_size,
|
153 |
-
shuffle=False,
|
154 |
-
num_workers=2,
|
155 |
-
pin_memory=True
|
156 |
-
)
|
157 |
-
|
158 |
-
def val_dataloader(self):
|
159 |
-
return torch.utils.data.DataLoader(
|
160 |
-
self.val_dataset,
|
161 |
-
batch_size=self.val_batch_size,
|
162 |
-
shuffle=False,
|
163 |
-
num_workers=2,
|
164 |
-
pin_memory=True
|
165 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/data.py
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
-
from typing import List
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from torchvision import transforms
|
7 |
-
import albumentations as A
|
8 |
-
import numpy as np
|
9 |
-
import albumentations.pytorch as al_pytorch
|
10 |
-
from typing import Dict, Tuple
|
11 |
-
|
12 |
-
|
13 |
-
class AnimeDataset(torch.utils.data.Dataset):
|
14 |
-
""" Sketchs and Colored Image dataset """
|
15 |
-
|
16 |
-
def __init__(self, imgs_path: List[str], transforms: transforms.Compose) -> None:
|
17 |
-
""" Set the transforms and file path """
|
18 |
-
self.list_files = imgs_path
|
19 |
-
self.transform = transforms
|
20 |
-
|
21 |
-
def __len__(self) -> int:
|
22 |
-
""" Should return number of files """
|
23 |
-
return len(self.list_files)
|
24 |
-
|
25 |
-
def __getitem__(self, index: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
26 |
-
""" Get image and mask by index """
|
27 |
-
# read image file
|
28 |
-
img_path = img_file = self.list_files[index]
|
29 |
-
image = np.array(Image.open(img_path))
|
30 |
-
|
31 |
-
# divide image into sketchs and colored_imgs, right is sketch and left is colored images
|
32 |
-
# as according to the dataset
|
33 |
-
sketchs = image[:, image.shape[1] // 2:, :]
|
34 |
-
colored_imgs = image[:, :image.shape[1] // 2, :]
|
35 |
-
|
36 |
-
# data augmentation on both sketchs and colored_imgs
|
37 |
-
augmentations = self.transform.both_transform(image=sketchs, image0=colored_imgs)
|
38 |
-
sketchs, colored_imgs = augmentations['image'], augmentations['image0']
|
39 |
-
|
40 |
-
# conduct data augmentation respectively
|
41 |
-
sketchs = self.transform.transform_only_input(image=sketchs)['image']
|
42 |
-
colored_imgs = self.transform.transform_only_mask(image=colored_imgs)['image']
|
43 |
-
return sketchs, colored_imgs
|
44 |
-
|
45 |
-
|
46 |
-
class Transforms:
|
47 |
-
""" Class to hold transforms """
|
48 |
-
|
49 |
-
def __init__(self):
|
50 |
-
# use on both sketchs and colored images
|
51 |
-
self.both_transform = A.Compose([
|
52 |
-
A.Resize(width=1024, height=1024),
|
53 |
-
A.HorizontalFlip(p=.5)
|
54 |
-
],
|
55 |
-
additional_targets={'image0': 'image'}
|
56 |
-
)
|
57 |
-
|
58 |
-
# use on sketchs only
|
59 |
-
self.transform_only_input = A.Compose([
|
60 |
-
# A.ColorJitter(p=.1),
|
61 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
62 |
-
al_pytorch.ToTensorV2(),
|
63 |
-
])
|
64 |
-
|
65 |
-
# use on colored images
|
66 |
-
self.transform_only_mask = A.Compose([
|
67 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
68 |
-
al_pytorch.ToTensorV2(),
|
69 |
-
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/discriminator/__init__.py
DELETED
File without changes
|
app/discriminator/patch_gan.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import torch
|
3 |
-
import albumentations as A
|
4 |
-
|
5 |
-
|
6 |
-
# CNN block will be used repeatly later
|
7 |
-
class CNNBlock(nn.Module):
|
8 |
-
def __init__(self, in_channels, out_channels, stride=2):
|
9 |
-
super().__init__()
|
10 |
-
self.conv = nn.Sequential(
|
11 |
-
nn.Conv2d(in_channels, out_channels, 4, stride, bias=False, padding_mode='reflect'),
|
12 |
-
nn.BatchNorm2d(out_channels),
|
13 |
-
nn.LeakyReLU(0.2)
|
14 |
-
)
|
15 |
-
|
16 |
-
def forward(self, x):
|
17 |
-
return self.conv(x)
|
18 |
-
|
19 |
-
|
20 |
-
class PatchGan(torch.nn.Module):
|
21 |
-
""" Patch GAN Architecture """
|
22 |
-
|
23 |
-
@staticmethod
|
24 |
-
def create_contracting_block(in_channels: int, out_channels: int):
|
25 |
-
"""
|
26 |
-
Create encoding layer
|
27 |
-
:param in_channels:
|
28 |
-
:param out_channels:
|
29 |
-
:return:
|
30 |
-
"""
|
31 |
-
conv_layer = torch.nn.Sequential(
|
32 |
-
torch.nn.Conv2d(
|
33 |
-
in_channels=in_channels,
|
34 |
-
out_channels=out_channels,
|
35 |
-
kernel_size=3,
|
36 |
-
padding=1,
|
37 |
-
),
|
38 |
-
torch.nn.ReLU(),
|
39 |
-
torch.nn.Conv2d(
|
40 |
-
in_channels=out_channels,
|
41 |
-
out_channels=out_channels,
|
42 |
-
kernel_size=3,
|
43 |
-
padding=1,
|
44 |
-
),
|
45 |
-
torch.nn.ReLU(),
|
46 |
-
)
|
47 |
-
max_pool = torch.nn.Sequential(
|
48 |
-
torch.nn.MaxPool2d(
|
49 |
-
stride=2,
|
50 |
-
kernel_size=2,
|
51 |
-
),
|
52 |
-
)
|
53 |
-
layer = torch.nn.Sequential(
|
54 |
-
conv_layer,
|
55 |
-
max_pool,
|
56 |
-
)
|
57 |
-
return layer
|
58 |
-
|
59 |
-
def __init__(self, input_channels: int, hidden_channels: int) -> None:
|
60 |
-
super().__init__()
|
61 |
-
self.resize_channels = torch.nn.Conv2d(
|
62 |
-
in_channels=input_channels,
|
63 |
-
out_channels=hidden_channels,
|
64 |
-
kernel_size=1,
|
65 |
-
)
|
66 |
-
|
67 |
-
self.enc1 = self.create_contracting_block(
|
68 |
-
in_channels=hidden_channels,
|
69 |
-
out_channels=hidden_channels * 2
|
70 |
-
)
|
71 |
-
|
72 |
-
self.enc2 = self.create_contracting_block(
|
73 |
-
in_channels=hidden_channels * 2,
|
74 |
-
out_channels=hidden_channels * 4
|
75 |
-
)
|
76 |
-
|
77 |
-
self.enc3 = self.create_contracting_block(
|
78 |
-
in_channels=hidden_channels * 4,
|
79 |
-
out_channels=hidden_channels * 8
|
80 |
-
)
|
81 |
-
self.enc4 = self.create_contracting_block(
|
82 |
-
in_channels=hidden_channels * 8,
|
83 |
-
out_channels=hidden_channels * 16
|
84 |
-
)
|
85 |
-
|
86 |
-
self.final_layer = torch.nn.Conv2d(
|
87 |
-
in_channels=hidden_channels * 16,
|
88 |
-
out_channels=1,
|
89 |
-
kernel_size=1,
|
90 |
-
)
|
91 |
-
|
92 |
-
def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
93 |
-
""" Forward patch gan layer """
|
94 |
-
inpt = torch.cat([x, y], axis=1)
|
95 |
-
resize_img = self.resize_channels(inpt)
|
96 |
-
enc1 = self.enc1(resize_img)
|
97 |
-
enc2 = self.enc2(enc1)
|
98 |
-
enc3 = self.enc3(enc2)
|
99 |
-
enc4 = self.enc4(enc3)
|
100 |
-
final_layer = self.final_layer(enc4)
|
101 |
-
return final_layer
|
102 |
-
|
103 |
-
|
104 |
-
# x, y <- concatenate the gen image and the input image to determin the gen image is real or not
|
105 |
-
class Discriminator(nn.Module):
|
106 |
-
def __init__(self, in_channels=3, features=[64, 128, 256, 512]):
|
107 |
-
super().__init__()
|
108 |
-
self.initial = nn.Sequential(
|
109 |
-
nn.Conv2d(in_channels * 2, features[0], kernel_size=4, stride=2, padding=1, padding_mode='reflect'),
|
110 |
-
nn.LeakyReLU(.2)
|
111 |
-
)
|
112 |
-
|
113 |
-
# save layers into a list
|
114 |
-
layers = []
|
115 |
-
in_channels = features[0]
|
116 |
-
for feature in features[1:]:
|
117 |
-
layers.append(
|
118 |
-
CNNBlock(
|
119 |
-
in_channels,
|
120 |
-
feature,
|
121 |
-
stride=1 if feature == features[-1] else 2
|
122 |
-
),
|
123 |
-
)
|
124 |
-
in_channels = feature
|
125 |
-
|
126 |
-
# append last conv layer
|
127 |
-
layers.append(
|
128 |
-
nn.Conv2d(in_channels, 1, kernel_size=4, stride=1, padding=1, padding_mode='reflect')
|
129 |
-
)
|
130 |
-
|
131 |
-
# create a model using the list of layers
|
132 |
-
self.model = nn.Sequential(*layers)
|
133 |
-
|
134 |
-
def forward(self, x, y):
|
135 |
-
x = torch.cat([x, y], dim=1)
|
136 |
-
x = self.initial(x)
|
137 |
-
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/generator/__init__.py
DELETED
File without changes
|
app/generator/unetGen.py
DELETED
@@ -1,174 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from app.generator import unetParts
|
4 |
-
|
5 |
-
|
6 |
-
class UNET(torch.nn.Module):
|
7 |
-
""" Implementation of unet """
|
8 |
-
|
9 |
-
def __init__(
|
10 |
-
self,
|
11 |
-
) -> None:
|
12 |
-
"""
|
13 |
-
Create the UNET here
|
14 |
-
"""
|
15 |
-
super().__init__()
|
16 |
-
self.enc_layer1: unetParts.EncoderLayer = unetParts.EncoderLayer(
|
17 |
-
in_channels=3,
|
18 |
-
out_channels=64
|
19 |
-
)
|
20 |
-
self.enc_layer2: unetParts.EncoderLayer = unetParts.EncoderLayer(
|
21 |
-
in_channels=64,
|
22 |
-
out_channels=128
|
23 |
-
)
|
24 |
-
self.enc_layer3: unetParts.EncoderLayer = unetParts.EncoderLayer(
|
25 |
-
in_channels=128,
|
26 |
-
out_channels=256
|
27 |
-
)
|
28 |
-
self.enc_layer4: unetParts.EncoderLayer = unetParts.EncoderLayer(
|
29 |
-
in_channels=256,
|
30 |
-
out_channels=512
|
31 |
-
)
|
32 |
-
# Middle layer
|
33 |
-
self.middle_layer: unetParts.MiddleLayer = unetParts.MiddleLayer(
|
34 |
-
in_channels=512,
|
35 |
-
out_channels=1024,
|
36 |
-
)
|
37 |
-
# Decoding layer
|
38 |
-
self.dec_layer1: unetParts.DecoderLayer = unetParts.DecoderLayer(
|
39 |
-
in_channels=1024,
|
40 |
-
out_channels=512,
|
41 |
-
)
|
42 |
-
self.dec_layer2: unetParts.DecoderLayer = unetParts.DecoderLayer(
|
43 |
-
in_channels=512,
|
44 |
-
out_channels=256,
|
45 |
-
)
|
46 |
-
|
47 |
-
self.dec_layer3: unetParts.DecoderLayer = unetParts.DecoderLayer(
|
48 |
-
in_channels=256,
|
49 |
-
out_channels=128,
|
50 |
-
)
|
51 |
-
self.dec_layer4: unetParts.DecoderLayer = unetParts.DecoderLayer(
|
52 |
-
in_channels=128,
|
53 |
-
out_channels=64,
|
54 |
-
)
|
55 |
-
self.final_layer: torch.nn.Conv2d = torch.nn.Conv2d(
|
56 |
-
in_channels=64,
|
57 |
-
out_channels=3,
|
58 |
-
kernel_size=1
|
59 |
-
)
|
60 |
-
|
61 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
62 |
-
"""
|
63 |
-
Forward function
|
64 |
-
:param x:
|
65 |
-
:return:
|
66 |
-
"""
|
67 |
-
# enc layers
|
68 |
-
enc1, conv1 = self.enc_layer1(x=x) # 64
|
69 |
-
enc2, conv2 = self.enc_layer2(x=enc1) # 128
|
70 |
-
enc3, conv3 = self.enc_layer3(x=enc2) # 256
|
71 |
-
enc4, conv4 = self.enc_layer4(x=enc3) # 512
|
72 |
-
# middle layers
|
73 |
-
mid = self.middle_layer(x=enc4) # 1024
|
74 |
-
# expanding layers
|
75 |
-
# 512
|
76 |
-
dec1 = self.dec_layer1(
|
77 |
-
input_layer=mid,
|
78 |
-
cropping_layer=conv4,
|
79 |
-
)
|
80 |
-
# 256
|
81 |
-
dec2 = self.dec_layer2(
|
82 |
-
input_layer=dec1,
|
83 |
-
cropping_layer=conv3,
|
84 |
-
)
|
85 |
-
# 128
|
86 |
-
dec3 = self.dec_layer3(
|
87 |
-
input_layer=dec2,
|
88 |
-
cropping_layer=conv2,
|
89 |
-
)
|
90 |
-
# 64
|
91 |
-
dec4 = self.dec_layer4(
|
92 |
-
input_layer=dec3,
|
93 |
-
cropping_layer=conv1,
|
94 |
-
)
|
95 |
-
# 3
|
96 |
-
fin_layer = self.final_layer(
|
97 |
-
dec4,
|
98 |
-
)
|
99 |
-
# Interpolate to retain size
|
100 |
-
fin_layer_resized = torch.nn.functional.interpolate(fin_layer, 572)
|
101 |
-
return fin_layer_resized
|
102 |
-
|
103 |
-
|
104 |
-
class Generator(nn.Module):
|
105 |
-
def __init__(self, in_channels=3, features=64):
|
106 |
-
super().__init__()
|
107 |
-
# Encoder
|
108 |
-
self.initial_down = nn.Sequential(
|
109 |
-
nn.Conv2d(in_channels, features, 4, 2, 1, padding_mode='reflect'),
|
110 |
-
nn.LeakyReLU(.2),
|
111 |
-
)
|
112 |
-
self.down1 = Block(features, features * 2, down=True, act='leaky', use_dropout=False) # 64
|
113 |
-
self.down2 = Block(features * 2, features * 4, down=True, act='leaky', use_dropout=False) # 32
|
114 |
-
self.down3 = Block(features * 4, features * 8, down=True, act='leaky', use_dropout=False) # 16
|
115 |
-
self.down4 = Block(features * 8, features * 8, down=True, act='leaky', use_dropout=False) # 8
|
116 |
-
self.down5 = Block(features * 8, features * 8, down=True, act='leaky', use_dropout=False) # 4
|
117 |
-
self.down6 = Block(features * 8, features * 8, down=True, act='leaky', use_dropout=False) # 2
|
118 |
-
self.bottleneck = nn.Sequential(
|
119 |
-
nn.Conv2d(features * 8, features * 8, 4, 2, 1, padding_mode='reflect'),
|
120 |
-
nn.ReLU(), # 1x1
|
121 |
-
)
|
122 |
-
# Decoder
|
123 |
-
self.up1 = Block(features * 8, features * 8, down=False, act='relu', use_dropout=True)
|
124 |
-
self.up2 = Block(features * 8 * 2, features * 8, down=False, act='relu', use_dropout=True)
|
125 |
-
self.up3 = Block(features * 8 * 2, features * 8, down=False, act='relu', use_dropout=True)
|
126 |
-
self.up4 = Block(features * 8 * 2, features * 8, down=False, act='relu', use_dropout=False)
|
127 |
-
self.up5 = Block(features * 8 * 2, features * 4, down=False, act='relu', use_dropout=False)
|
128 |
-
self.up6 = Block(features * 4 * 2, features * 2, down=False, act='relu', use_dropout=False)
|
129 |
-
self.up7 = Block(features * 2 * 2, features, down=False, act='relu', use_dropout=False)
|
130 |
-
self.final_up = nn.Sequential(
|
131 |
-
nn.ConvTranspose2d(features * 2, in_channels, kernel_size=4, stride=2, padding=1),
|
132 |
-
nn.Tanh()
|
133 |
-
)
|
134 |
-
|
135 |
-
def forward(self, x):
|
136 |
-
# Encoder
|
137 |
-
d1 = self.initial_down(x)
|
138 |
-
d2 = self.down1(d1)
|
139 |
-
d3 = self.down2(d2)
|
140 |
-
d4 = self.down3(d3)
|
141 |
-
d5 = self.down4(d4)
|
142 |
-
d6 = self.down5(d5)
|
143 |
-
d7 = self.down6(d6)
|
144 |
-
bottleneck = self.bottleneck(d7)
|
145 |
-
|
146 |
-
# Decoder
|
147 |
-
u1 = self.up1(bottleneck)
|
148 |
-
u2 = self.up2(torch.cat([u1, d7], 1))
|
149 |
-
u3 = self.up3(torch.cat([u2, d6], 1))
|
150 |
-
u4 = self.up4(torch.cat([u3, d5], 1))
|
151 |
-
u5 = self.up5(torch.cat([u4, d4], 1))
|
152 |
-
u6 = self.up6(torch.cat([u5, d3], 1))
|
153 |
-
u7 = self.up7(torch.cat([u6, d2], 1))
|
154 |
-
return self.final_up(torch.cat([u7, d1], 1))
|
155 |
-
|
156 |
-
|
157 |
-
# block will be use repeatly later
|
158 |
-
class Block(nn.Module):
|
159 |
-
def __init__(self, in_channels, out_channels, down=True, act='relu', use_dropout=False):
|
160 |
-
super().__init__()
|
161 |
-
self.conv = nn.Sequential(
|
162 |
-
# the block will be use on both encoder (down=True) and decoder (down=False)
|
163 |
-
nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False, padding_mode='reflect')
|
164 |
-
if down
|
165 |
-
else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False),
|
166 |
-
nn.BatchNorm2d(out_channels),
|
167 |
-
nn.ReLU() if act == 'relu' else nn.LeakyReLU(.2)
|
168 |
-
)
|
169 |
-
self.use_dropout = use_dropout
|
170 |
-
self.dropout = nn.Dropout(.5)
|
171 |
-
|
172 |
-
def forward(self, x):
|
173 |
-
x = self.conv(x)
|
174 |
-
return self.dropout(x) if self.use_dropout else x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/generator/unetParts.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from typing import Tuple
|
3 |
-
|
4 |
-
|
5 |
-
class DecoderLayer(torch.nn.Module):
|
6 |
-
"""Decoder model"""
|
7 |
-
|
8 |
-
def __init__(self, in_channels: int, out_channels: int):
|
9 |
-
super().__init__()
|
10 |
-
self.up_sample_layer = torch.nn.Sequential(
|
11 |
-
torch.nn.ConvTranspose2d(
|
12 |
-
in_channels=in_channels,
|
13 |
-
out_channels=out_channels,
|
14 |
-
kernel_size=2,
|
15 |
-
stride=2,
|
16 |
-
bias=False,
|
17 |
-
)
|
18 |
-
)
|
19 |
-
self.conv_layer = EncoderLayer(
|
20 |
-
in_channels=in_channels,
|
21 |
-
out_channels=out_channels,
|
22 |
-
).conv_layer
|
23 |
-
|
24 |
-
@staticmethod
|
25 |
-
def _get_cropping_shape(previous_layer_shape: torch.Size, current_layer_shape: torch.Size) -> int:
|
26 |
-
""" Get the shape to crop """
|
27 |
-
return (previous_layer_shape[2] - current_layer_shape[2]) // 2 * -1
|
28 |
-
|
29 |
-
def forward(
|
30 |
-
self,
|
31 |
-
input_layer: torch.Tensor,
|
32 |
-
cropping_layer: torch.Tensor
|
33 |
-
) -> torch.Tensor:
|
34 |
-
"""
|
35 |
-
Forward function to concatenate and conv the figure
|
36 |
-
:param cropping_layer:
|
37 |
-
:param input_layer:
|
38 |
-
:return:
|
39 |
-
"""
|
40 |
-
input_layer = self.up_sample_layer(input_layer)
|
41 |
-
|
42 |
-
cropping_shape = self._get_cropping_shape(
|
43 |
-
current_layer_shape=input_layer.shape,
|
44 |
-
previous_layer_shape=cropping_layer.shape,
|
45 |
-
)
|
46 |
-
|
47 |
-
cropping_layer = torch.nn.functional.pad(
|
48 |
-
input=cropping_layer,
|
49 |
-
pad=[cropping_shape for _ in range(4)]
|
50 |
-
)
|
51 |
-
combined_layer = torch.cat(
|
52 |
-
tensors=[input_layer, cropping_layer],
|
53 |
-
dim=1
|
54 |
-
)
|
55 |
-
result = self.conv_layer(combined_layer)
|
56 |
-
return result
|
57 |
-
|
58 |
-
|
59 |
-
class EncoderLayer(torch.nn.Module):
|
60 |
-
"""Encoder Layer"""
|
61 |
-
|
62 |
-
def __init__(self, in_channels: int, out_channels: int) -> None:
|
63 |
-
super().__init__()
|
64 |
-
self.conv_layer = torch.nn.Sequential(
|
65 |
-
torch.nn.Conv2d(
|
66 |
-
in_channels=in_channels,
|
67 |
-
out_channels=out_channels,
|
68 |
-
kernel_size=3,
|
69 |
-
stride=2,
|
70 |
-
padding=1,
|
71 |
-
),
|
72 |
-
torch.nn.LeakyReLU(),
|
73 |
-
torch.nn.Conv2d(
|
74 |
-
in_channels=out_channels,
|
75 |
-
out_channels=out_channels,
|
76 |
-
kernel_size=3,
|
77 |
-
stride=2,
|
78 |
-
padding=1,
|
79 |
-
),
|
80 |
-
torch.nn.LeakyReLU(),
|
81 |
-
)
|
82 |
-
self.max_pool = torch.nn.Sequential(
|
83 |
-
torch.nn.MaxPool2d(2),
|
84 |
-
)
|
85 |
-
self.layer = torch.nn.Sequential(
|
86 |
-
self.conv_layer,
|
87 |
-
self.max_pool,
|
88 |
-
)
|
89 |
-
|
90 |
-
def get_conv_layers(self, x: torch.Tensor) -> torch.Tensor:
|
91 |
-
"""Need to concatenate the layer"""
|
92 |
-
return self.conv_layer(x)
|
93 |
-
|
94 |
-
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
95 |
-
"""Forward pass to return conv layer and the max pool layer"""
|
96 |
-
conv_output: torch.tensor = self.conv_layer(x)
|
97 |
-
fin_out: torch.Tensor = self.max_pool(conv_output)
|
98 |
-
return fin_out, conv_output
|
99 |
-
|
100 |
-
|
101 |
-
class MiddleLayer(EncoderLayer):
|
102 |
-
"""Middle layer only"""
|
103 |
-
|
104 |
-
def forward(self, x: torch.tensor) -> torch.tensor:
|
105 |
-
"""Forward pass"""
|
106 |
-
return self.conv_layer(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/model/__init__.py
DELETED
File without changes
|
app/model/lit_model.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
import matplotlib.pyplot as plt
|
2 |
-
import pytorch_lightning as pl
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torchvision
|
6 |
-
|
7 |
-
|
8 |
-
class Pix2PixLitModule(pl.LightningModule):
|
9 |
-
""" Lightning Module for pix2pix """
|
10 |
-
|
11 |
-
@staticmethod
|
12 |
-
def _weights_init(m):
|
13 |
-
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
14 |
-
torch.nn.init.normal_(m.weight, 0.0, 0.02)
|
15 |
-
if isinstance(m, nn.BatchNorm2d):
|
16 |
-
torch.nn.init.normal_(m.weight, 0.0, 0.02)
|
17 |
-
torch.nn.init.constant_(m.bias, 0)
|
18 |
-
|
19 |
-
def __init__(
|
20 |
-
self,
|
21 |
-
generator,
|
22 |
-
discriminator,
|
23 |
-
use_gpu: bool,
|
24 |
-
lambda_recon=100
|
25 |
-
):
|
26 |
-
super().__init__()
|
27 |
-
self.save_hyperparameters()
|
28 |
-
|
29 |
-
self.gen = generator
|
30 |
-
self.disc = discriminator
|
31 |
-
|
32 |
-
# intializing weights
|
33 |
-
self.gen = self.gen.apply(self._weights_init)
|
34 |
-
self.disc = self.disc.apply(self._weights_init)
|
35 |
-
#
|
36 |
-
self.adversarial_criterion = nn.BCEWithLogitsLoss()
|
37 |
-
self.recon_criterion = nn.L1Loss()
|
38 |
-
self.lambda_l1 = lambda_recon
|
39 |
-
|
40 |
-
def _gen_step(self, sketch, coloured_sketches):
|
41 |
-
# Pix2Pix has adversarial and a reconstruction loss
|
42 |
-
# First calculate the adversarial loss
|
43 |
-
gen_coloured_sketches = self.gen(sketch)
|
44 |
-
# disc_logits = self.disc(gen_coloured_sketches, coloured_sketches)
|
45 |
-
disc_logits = self.disc(sketch, gen_coloured_sketches)
|
46 |
-
adversarial_loss = self.adversarial_criterion(disc_logits, torch.ones_like(disc_logits))
|
47 |
-
# calculate reconstruction loss
|
48 |
-
recon_loss = self.recon_criterion(gen_coloured_sketches, coloured_sketches) * self.lambda_l1
|
49 |
-
#
|
50 |
-
self.log("Gen recon_loss", recon_loss)
|
51 |
-
self.log("Gen adversarial_loss", adversarial_loss)
|
52 |
-
#
|
53 |
-
return adversarial_loss + recon_loss
|
54 |
-
|
55 |
-
def _disc_step(self, sketch, coloured_sketches):
|
56 |
-
gen_coloured_sketches = self.gen(sketch).detach()
|
57 |
-
#
|
58 |
-
# fake_logits = self.disc(gen_coloured_sketches, coloured_sketches)
|
59 |
-
fake_logits = self.disc(sketch, gen_coloured_sketches)
|
60 |
-
real_logits = self.disc(sketch, coloured_sketches)
|
61 |
-
#
|
62 |
-
fake_loss = self.adversarial_criterion(fake_logits, torch.zeros_like(fake_logits))
|
63 |
-
real_loss = self.adversarial_criterion(real_logits, torch.ones_like(real_logits))
|
64 |
-
#
|
65 |
-
self.log("PatchGAN fake_loss", fake_loss)
|
66 |
-
self.log("PatchGAN real_loss", real_loss)
|
67 |
-
return (real_loss + fake_loss) / 2
|
68 |
-
|
69 |
-
def forward(self, x):
|
70 |
-
return self.gen(x)
|
71 |
-
|
72 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
73 |
-
real, condition = batch
|
74 |
-
loss = None
|
75 |
-
if optimizer_idx == 0:
|
76 |
-
loss = self._disc_step(real, condition)
|
77 |
-
self.log("TRAIN_PatchGAN Loss", loss)
|
78 |
-
elif optimizer_idx == 1:
|
79 |
-
loss = self._gen_step(real, condition)
|
80 |
-
self.log("TRAIN_Generator Loss", loss)
|
81 |
-
return loss
|
82 |
-
|
83 |
-
def validation_epoch_end(self, outputs) -> None:
|
84 |
-
""" Log the images"""
|
85 |
-
sketch = outputs[0]['sketch']
|
86 |
-
colour = outputs[0]['colour']
|
87 |
-
gen_coloured = self.gen(sketch)
|
88 |
-
grid_image = torchvision.utils.make_grid(
|
89 |
-
[sketch[0], colour[0], gen_coloured[0]],
|
90 |
-
normalize=True
|
91 |
-
)
|
92 |
-
self.logger.experiment.add_image(f'Image Grid {str(self.current_epoch)}', grid_image, self.current_epoch)
|
93 |
-
#plt.imshow(grid_image.permute(1, 2, 0))
|
94 |
-
|
95 |
-
def validation_step(self, batch, batch_idx):
|
96 |
-
""" Validation step """
|
97 |
-
real, condition = batch
|
98 |
-
return {
|
99 |
-
'sketch': real,
|
100 |
-
'colour': condition
|
101 |
-
}
|
102 |
-
|
103 |
-
def configure_optimizers(self, lr=2e-4):
|
104 |
-
gen_opt = torch.optim.Adam(self.gen.parameters(), lr=lr, betas=(0.5, 0.999))
|
105 |
-
disc_opt = torch.optim.Adam(self.disc.parameters(), lr=lr, betas=(0.5, 0.999))
|
106 |
-
return disc_opt, gen_opt
|
107 |
-
|
108 |
-
# class EpochInference(pl.Callback):
|
109 |
-
# """
|
110 |
-
# Callback on each end of training epoch
|
111 |
-
# The callback will do inference on test dataloader based on corresponding checkpoints
|
112 |
-
# The results will be saved as an image with 4-rows:
|
113 |
-
# 1 - Input image e.g. grayscale edged input
|
114 |
-
# 2 - Ground-truth
|
115 |
-
# 3 - Single inference
|
116 |
-
# 4 - Mean of hundred accumulated inference
|
117 |
-
# Note that the inference have a noise factor that will generate different output on each execution
|
118 |
-
# """
|
119 |
-
#
|
120 |
-
# def __init__(self, dataloader, use_gpu: bool, *args, **kwargs):
|
121 |
-
# super().__init__(*args, **kwargs)
|
122 |
-
# self.dataloader = dataloader
|
123 |
-
# self.use_gpu = use_gpu
|
124 |
-
#
|
125 |
-
# def on_train_epoch_end(self, trainer, pl_module):
|
126 |
-
# super().on_train_epoch_end(trainer, pl_module)
|
127 |
-
# data = next(iter(self.dataloader))
|
128 |
-
# image, target = data
|
129 |
-
# if self.use_gpu:
|
130 |
-
# image = image.cuda()
|
131 |
-
# target = target.cuda()
|
132 |
-
# with torch.no_grad():
|
133 |
-
# # Take average of multiple inference as there is a random noise
|
134 |
-
# # Single
|
135 |
-
# reconstruction_init = pl_module(image)
|
136 |
-
# reconstruction_init = torch.clip(reconstruction_init, 0, 1)
|
137 |
-
# # # Mean
|
138 |
-
# # reconstruction_mean = torch.stack([pl_module(image) for _ in range(10)])
|
139 |
-
# # reconstruction_mean = torch.clip(reconstruction_mean, 0, 1)
|
140 |
-
# # reconstruction_mean = torch.mean(reconstruction_mean, dim=0)
|
141 |
-
# # Grayscale 1-D to 3-D
|
142 |
-
# # image = torch.stack([image for _ in range(3)], dim=1)
|
143 |
-
# # image = torch.squeeze(image)
|
144 |
-
# grid_image = torchvision.utils.make_grid([image[0], target[0], reconstruction_init[0]])
|
145 |
-
# torchvision.utils.save_image(grid_image, fp=f'{trainer.default_root_dir}/epoch-{trainer.current_epoch:04}.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/scratch.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
|
2 |
-
class GANInference:
|
3 |
-
def __init__(
|
4 |
-
self,
|
5 |
-
model: Pix2PixLitModule,
|
6 |
-
img_file: str = "/Users/nimud/Downloads/thesis_test2.png",
|
7 |
-
) -> None:
|
8 |
-
self.img_file = img_file
|
9 |
-
self.model = model
|
10 |
-
|
11 |
-
def _get_image_from_path(self) -> torch.Tensor:
|
12 |
-
""" gets the tensor from filepath """
|
13 |
-
image = np.array(Image.open(self.img_file))
|
14 |
-
# use on inference
|
15 |
-
inference_transform = A.Compose([
|
16 |
-
A.Resize(width=256, height=256),
|
17 |
-
A.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5], max_pixel_value=255.0),
|
18 |
-
al_pytorch.ToTensorV2(),
|
19 |
-
])
|
20 |
-
inference_img = inference_transform(image=image)['image'].unsqueeze(0)
|
21 |
-
return inference_img
|
22 |
-
|
23 |
-
def _create_grid(self, result: torch.Tensor) -> np.array:
|
24 |
-
return torchvision.utils.make_grid(
|
25 |
-
[result[0].permute(1, 2, 0).detach()],
|
26 |
-
normalize=True
|
27 |
-
)
|
28 |
-
|
29 |
-
def run(self) -> np.array:
|
30 |
-
""" Returns a plottable image """
|
31 |
-
inference_img = self._get_image_from_path()
|
32 |
-
result = self.model(inference_img)
|
33 |
-
adjusted_result = self._create_grid(result=result)
|
34 |
-
return adjusted_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|