import gradio as gr from fastai.vision.all import * from huggingface_hub import from_pretrained_fastai learn = from_pretrained_fastai("nnifil19/graph_classifier") labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "graphic predictor" description = "A model that classifies between different graphs" examples = ['cosine', 'exponential', 'tangential','logarithmic','gaussian'] gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), title=title, description=description, examples=examples, ).launch()