Spaces:
Sleeping
Sleeping
import os | |
from typing import Dict, List, Optional, Protocol | |
import pandas as pd | |
import tqdm | |
import ujson | |
from nlp4web_codebase.ir.data_loaders import IRDataset | |
def round_dict(obj: Dict[str, float], ndigits: int = 4) -> Dict[str, float]: | |
return {k: round(v, ndigits=ndigits) for k, v in obj.items()} | |
def sort_dict(obj: Dict[str, float], reverse: bool = True) -> Dict[str, float]: | |
return dict(sorted(obj.items(), key=lambda pair: pair[1], reverse=reverse)) | |
def save_ranking_results( | |
output_dir: str, | |
query_ids: List[str], | |
rankings: List[Dict[str, float]], | |
query_performances_lists: List[Dict[str, float]], | |
cid2tweights_lists: Optional[List[Dict[str, Dict[str, float]]]] = None, | |
): | |
os.makedirs(output_dir, exist_ok=True) | |
output_path = os.path.join(output_dir, "ranking_results.jsonl") | |
rows = [] | |
for i, (query_id, ranking, query_performances) in enumerate( | |
zip(query_ids, rankings, query_performances_lists) | |
): | |
row = { | |
"query_id": query_id, | |
"ranking": round_dict(ranking), | |
"query_performances": round_dict(query_performances), | |
"cid2tweights": {}, | |
} | |
if cid2tweights_lists is not None: | |
row["cid2tweights"] = { | |
cid: round_dict(tws) for cid, tws in cid2tweights_lists[i].items() | |
} | |
rows.append(row) | |
pd.DataFrame(rows).to_json( | |
output_path, | |
orient="records", | |
lines=True, | |
) | |
class TermWeightingFunction(Protocol): | |
def __call__(self, query: str, cid: str) -> Dict[str, float]: ... | |
def compare( | |
dataset: IRDataset, | |
results_path1: str, | |
results_path2: str, | |
output_dir: str, | |
main_metric: str = "recip_rank", | |
system1: Optional[str] = None, | |
system2: Optional[str] = None, | |
term_weighting_fn1: Optional[TermWeightingFunction] = None, | |
term_weighting_fn2: Optional[TermWeightingFunction] = None, | |
) -> None: | |
os.makedirs(output_dir, exist_ok=True) | |
df1 = pd.read_json(results_path1, orient="records", lines=True) | |
df2 = pd.read_json(results_path2, orient="records", lines=True) | |
assert len(df1) == len(df2) | |
all_qrels = {} | |
for split in dataset.split2qrels: | |
all_qrels.update(dataset.get_qrels_dict(split)) | |
qid2query = {query.query_id: query for query in dataset.queries} | |
cid2doc = {doc.collection_id: doc for doc in dataset.corpus} | |
diff_col = f"{main_metric}:qp1-qp2" | |
merged = pd.merge(df1, df2, on="query_id", how="outer") | |
rows = [] | |
for _, example in tqdm.tqdm(merged.iterrows(), desc="Comparing", total=len(merged)): | |
docs = {cid: cid2doc[cid].text for cid in dict(example["ranking_x"])} | |
docs.update({cid: cid2doc[cid].text for cid in dict(example["ranking_y"])}) | |
query_id = example["query_id"] | |
row = { | |
"query_id": query_id, | |
"query": qid2query[query_id].text, | |
diff_col: example["query_performances_x"][main_metric] | |
- example["query_performances_y"][main_metric], | |
"ranking1": ujson.dumps(example["ranking_x"], indent=4), | |
"ranking2": ujson.dumps(example["ranking_y"], indent=4), | |
"docs": ujson.dumps(docs, indent=4), | |
"query_performances1": ujson.dumps( | |
example["query_performances_x"], indent=4 | |
), | |
"query_performances2": ujson.dumps( | |
example["query_performances_y"], indent=4 | |
), | |
"qrels": ujson.dumps(all_qrels[query_id], indent=4), | |
} | |
if term_weighting_fn1 is not None and term_weighting_fn2 is not None: | |
all_cids = set(example["ranking_x"]) | set(example["ranking_y"]) | |
cid2tweights1 = {} | |
cid2tweights2 = {} | |
ranking1 = {} | |
ranking2 = {} | |
for cid in all_cids: | |
tweights1 = term_weighting_fn1(query=qid2query[query_id].text, cid=cid) | |
tweights2 = term_weighting_fn2(query=qid2query[query_id].text, cid=cid) | |
ranking1[cid] = sum(tweights1.values()) | |
ranking2[cid] = sum(tweights2.values()) | |
cid2tweights1[cid] = tweights1 | |
cid2tweights2[cid] = tweights2 | |
ranking1 = sort_dict(ranking1) | |
ranking2 = sort_dict(ranking2) | |
row["ranking1"] = ujson.dumps(ranking1, indent=4) | |
row["ranking2"] = ujson.dumps(ranking2, indent=4) | |
cid2tweights1 = {cid: cid2tweights1[cid] for cid in ranking1} | |
cid2tweights2 = {cid: cid2tweights2[cid] for cid in ranking2} | |
row["cid2tweights1"] = ujson.dumps(cid2tweights1, indent=4) | |
row["cid2tweights2"] = ujson.dumps(cid2tweights2, indent=4) | |
rows.append(row) | |
table = pd.DataFrame(rows).sort_values(by=diff_col, ascending=False) | |
output_path = os.path.join(output_dir, f"compare-{system1}_vs_{system2}.tsv") | |
table.to_csv(output_path, sep="\t", index=False) | |
# if __name__ == "__main__": | |
# # python -m lecture2.bm25.analysis | |
# from nlp4web_codebase.ir.data_loaders.sciq import load_sciq | |
# from lecture2.bm25.bm25_retriever import BM25Retriever | |
# from lecture2.bm25.tfidf_retriever import TFIDFRetriever | |
# import numpy as np | |
# sciq = load_sciq() | |
# system1 = "bm25" | |
# system2 = "tfidf" | |
# results_path1 = f"output/sciq-{system1}/results/ranking_results.jsonl" | |
# results_path2 = f"output/sciq-{system2}/results/ranking_results.jsonl" | |
# index_dir1 = f"output/sciq-{system1}" | |
# index_dir2 = f"output/sciq-{system2}" | |
# compare( | |
# dataset=sciq, | |
# results_path1=results_path1, | |
# results_path2=results_path2, | |
# output_dir=f"output/sciq-{system1}_vs_{system2}", | |
# system1=system1, | |
# system2=system2, | |
# term_weighting_fn1=BM25Retriever(index_dir1).get_term_weights, | |
# term_weighting_fn2=TFIDFRetriever(index_dir2).get_term_weights, | |
# ) | |
# # bias on #shared_terms of TFIDF: | |
# df1 = pd.read_json(results_path1, orient="records", lines=True) | |
# df2 = pd.read_json(results_path2, orient="records", lines=True) | |
# merged = pd.merge(df1, df2, on="query_id", how="outer") | |
# nterms1 = [] | |
# nterms2 = [] | |
# for _, row in merged.iterrows(): | |
# nterms1.append(len(list(dict(row["cid2tweights_x"]).values())[0])) | |
# nterms2.append(len(list(dict(row["cid2tweights_y"]).values())[0])) | |
# percentiles = (5, 25, 50, 75, 95) | |
# print(system1, np.percentile(nterms1, percentiles), np.mean(nterms1).round(2)) | |
# print(system2, np.percentile(nterms2, percentiles), np.mean(nterms2).round(2)) | |
# # bm25 [ 3. 4. 5. 7. 11.] 5.64 | |
# # tfidf [1. 2. 3. 5. 9.] 3.58 | |