Spaces:
Sleeping
Sleeping
from typing import Dict, List | |
from nlp4web_codebase.ir.data_loaders import IRDataset, Split | |
from nlp4web_codebase.ir.data_loaders.dm import Document, Query, QRel | |
from datasets import load_dataset | |
import joblib | |
def load_sciq(verbose: bool = False) -> IRDataset: | |
train = load_dataset("allenai/sciq", split="train") | |
validation = load_dataset("allenai/sciq", split="validation") | |
test = load_dataset("allenai/sciq", split="test") | |
data = {Split.train: train, Split.dev: validation, Split.test: test} | |
# Each duplicated record is the same to each other: | |
df = train.to_pandas() + validation.to_pandas() + test.to_pandas() | |
for question, group in df.groupby("question"): | |
assert len(set(group["support"].tolist())) == len(group) | |
assert len(set(group["correct_answer"].tolist())) == len(group) | |
# Build: | |
corpus = [] | |
queries = [] | |
split2qrels: Dict[str, List[dict]] = {} | |
question2id = {} | |
support2id = {} | |
for split, rows in data.items(): | |
if verbose: | |
print(f"|raw_{split}|", len(rows)) | |
split2qrels[split] = [] | |
for i, row in enumerate(rows): | |
example_id = f"{split}-{i}" | |
support: str = row["support"] | |
if len(support.strip()) == 0: | |
continue | |
question = row["question"] | |
if len(support.strip()) == 0: | |
continue | |
if support in support2id: | |
continue | |
else: | |
support2id[support] = example_id | |
if question in question2id: | |
continue | |
else: | |
question2id[question] = example_id | |
doc = {"collection_id": example_id, "text": support} | |
query = {"query_id": example_id, "text": row["question"]} | |
qrel = { | |
"query_id": example_id, | |
"collection_id": example_id, | |
"relevance": 1, | |
"answer": row["correct_answer"], | |
} | |
corpus.append(Document(**doc)) | |
queries.append(Query(**query)) | |
split2qrels[split].append(QRel(**qrel)) | |
# Assembly and return: | |
return IRDataset(corpus=corpus, queries=queries, split2qrels=split2qrels) | |
if __name__ == "__main__": | |
# python -m nlp4web_codebase.ir.data_loaders.sciq | |
import ujson | |
import time | |
start = time.time() | |
dataset = load_sciq(verbose=True) | |
print(f"Loading costs: {time.time() - start}s") | |
print(ujson.dumps(dataset.get_stats(), indent=4)) | |
# ________________________________________________________________________________ | |
# [Memory] Calling __main__--home-kwang-research-nlp4web-ir-exercise-nlp4web-nlp4web-ir-data_loaders-sciq.load_sciq... | |
# load_sciq(verbose=True) | |
# |raw_train| 11679 | |
# |raw_dev| 1000 | |
# |raw_test| 1000 | |
# ________________________________________________________load_sciq - 7.3s, 0.1min | |
# Loading costs: 7.260092735290527s | |
# { | |
# "|corpus|": 12160, | |
# "|queries|": 12160, | |
# "|qrels-train|": 10409, | |
# "|qrels-dev|": 875, | |
# "|qrels-test|": 876 | |
# } | |