Commit
·
e8d0976
1
Parent(s):
205e913
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
|
5 |
+
class Pipline:
|
6 |
+
def __init__(self, model, tokenizer, device='cpu'):
|
7 |
+
self.device = device
|
8 |
+
self.model = model.to(self.device)
|
9 |
+
self.tokenizer = tokenizer
|
10 |
+
self.pre_prompt = "\n\nYou are a AI assistant who helps the user to solve their issue\n\n"
|
11 |
+
|
12 |
+
@torch.no_grad()
|
13 |
+
def respond(self, Instruction=None, input=None, temperature=0.8, max_length=200, do_sample=True, top_k=0, top_p=0.9, repetition_penalty=1.0, num_return_sequences=1, num_beams=1, early_stopping=False, use_cache=True, **generate_kwargs):
|
14 |
+
if not Instruction and not input:
|
15 |
+
raise ValueError("Either Instruction or input must be passed.")
|
16 |
+
query = f"""{self.pre_prompt}
|
17 |
+
Instruction: {Instruction if Instruction else ""}
|
18 |
+
Input: {input if input else ""}
|
19 |
+
Output:"""
|
20 |
+
inp_tokens_l = self.tokenizer(query, return_tensors='pt').input_ids
|
21 |
+
inp_tokens = inp_tokens_l.to(self.device)
|
22 |
+
out_tokens = self.model.generate(inp_tokens, max_length=max_length, temperature=temperature, do_sample=do_sample, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, num_beams=num_beams, early_stopping=early_stopping, use_cache=use_cache, **generate_kwargs)
|
23 |
+
out_text = self.tokenizer.batch_decode(out_tokens, skip_special_tokens=True)
|
24 |
+
# self.pre_prompt = out_text[0].split("<|endoftext|>")[0]
|
25 |
+
return out_text
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125M")
|
28 |
+
model = torch.load('model-cpu.pkl')
|
29 |
+
|
30 |
+
pipe = Pipline(model=model, tokenizer=tokenizer, device='cpu')
|
31 |
+
|
32 |
+
input_components = [
|
33 |
+
gr.inputs.Textbox(label='Instruction', placeholder='Enter instruction...'),
|
34 |
+
gr.inputs.Textbox(label='Input', placeholder='Enter input...'),
|
35 |
+
]
|
36 |
+
|
37 |
+
output_components = [
|
38 |
+
gr.outputs.Textbox(label='Output'),
|
39 |
+
]
|
40 |
+
|
41 |
+
def chatbot_response(Instruction, input, max_length, temperature):
|
42 |
+
output = pipe.respond(
|
43 |
+
Instruction=Instruction,
|
44 |
+
input=input,
|
45 |
+
max_length=int(max_length),
|
46 |
+
temperature=float(temperature),
|
47 |
+
)
|
48 |
+
return output[0]
|
49 |
+
|
50 |
+
interface = gr.Interface(
|
51 |
+
fn=chatbot_response,
|
52 |
+
inputs=input_components + [
|
53 |
+
gr.inputs.Slider(
|
54 |
+
label='Max Length',
|
55 |
+
minimum=10,
|
56 |
+
maximum=500,
|
57 |
+
step=10,
|
58 |
+
default=200,
|
59 |
+
),
|
60 |
+
gr.inputs.Slider(
|
61 |
+
label='Temperature',
|
62 |
+
minimum=0.1,
|
63 |
+
maximum=1.0,
|
64 |
+
step=0.1,
|
65 |
+
default=0.8,
|
66 |
+
),
|
67 |
+
],
|
68 |
+
outputs=output_components,
|
69 |
+
title='AI Assistant Chatbot',
|
70 |
+
description='Type in an instruction and input, and get a response from the AI assistant!',
|
71 |
+
)
|
72 |
+
|
73 |
+
interface.launch()
|