|
from data_sources import process_data_upload |
|
|
|
import gradio as gr |
|
import json |
|
|
|
from haystack.dataclasses import ChatMessage |
|
from haystack.components.generators.chat import OpenAIChatGenerator |
|
|
|
import os |
|
from getpass import getpass |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
if "OPENAI_API_KEY" not in os.environ: |
|
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:") |
|
|
|
chat_generator = OpenAIChatGenerator(model="gpt-4o") |
|
response = None |
|
messages = [ |
|
ChatMessage.from_system( |
|
"You are a helpful and knowledgeable agent who has access to an SQL database which has a table called 'data_source'" |
|
) |
|
] |
|
|
|
def chatbot_with_fc(message, history): |
|
print("CHATBOT FUNCTIONS") |
|
from functions import sqlite_query_func |
|
from pipelines import rag_pipeline_func |
|
import tools |
|
import importlib |
|
importlib.reload(tools) |
|
|
|
available_functions = {"sql_query_func": sqlite_query_func, "rag_pipeline_func": rag_pipeline_func} |
|
messages.append(ChatMessage.from_user(message)) |
|
response = chat_generator.run(messages=messages, generation_kwargs={"tools": tools.tools}) |
|
|
|
while True: |
|
|
|
if response and response["replies"][0].meta["finish_reason"] == "tool_calls": |
|
function_calls = json.loads(response["replies"][0].text) |
|
for function_call in function_calls: |
|
|
|
function_name = function_call["function"]["name"] |
|
function_args = json.loads(function_call["function"]["arguments"]) |
|
|
|
|
|
function_to_call = available_functions[function_name] |
|
function_response = function_to_call(**function_args) |
|
|
|
messages.append(ChatMessage.from_function(content=function_response['reply'], name=function_name)) |
|
response = chat_generator.run(messages=messages, generation_kwargs={"tools": tools.tools}) |
|
|
|
|
|
else: |
|
messages.append(response["replies"][0]) |
|
break |
|
return response["replies"][0].text |
|
|
|
css= ".file_marker .large{min-height:50px !important;}" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
title = gr.HTML("<h1 style='text-align:center;'>Virtual Data Analyst</h1>") |
|
description = gr.HTML("<p style='text-align:center;'>Upload a CSV file and chat with our virtual data analyst to get insights on your data set</p>") |
|
file_output = gr.File(label="CSV File", show_label=True, elem_classes="file_marker", file_types=['.csv']) |
|
|
|
@gr.render(inputs=file_output) |
|
def data_options(filename): |
|
print(filename) |
|
if filename: |
|
bot = gr.Chatbot(type='messages', label="CSV Chat Window", show_label=True, render=False, visible=True, elem_classes="chatbot") |
|
chat = gr.ChatInterface( |
|
fn=chatbot_with_fc, |
|
type='messages', |
|
chatbot=bot, |
|
title="Chat with your data file", |
|
examples=[ |
|
["Describe the dataset"], |
|
["List the columns in the dataset"], |
|
["What could this data be used for?"], |
|
], |
|
) |
|
|
|
process_upload(filename) |
|
|
|
def process_upload(upload_value): |
|
if upload_value: |
|
print("UPLOAD VALUE") |
|
print(upload_value) |
|
process_data_upload(upload_value) |
|
return [], [] |
|
|
|
|
|
|