nolanzandi's picture
Upload 11 files
24371db verified
raw
history blame
4.83 kB
from haystack import Pipeline
from haystack.components.builders import PromptBuilder
from haystack.components.generators.openai import OpenAIGenerator
from haystack.components.routers import ConditionalRouter
from functions import SQLiteQuery
from typing import List
import sqlite3
import os
from getpass import getpass
from dotenv import load_dotenv
load_dotenv()
if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass("Enter OpenAI API key:")
'''
prompt = PromptBuilder(template="""Please generate an SQL query. The query should answer the following Question: {{question}};
The query is to be answered for the table is called 'data_source' with the following
Columns: {{columns}};
Answer:""")
sql_query = SQLQuery('data_source.db')
llm = OpenAIGenerator(model="gpt-4")
sql_pipeline = Pipeline()
sql_pipeline.add_component("prompt", prompt)
sql_pipeline.add_component("llm", llm)
sql_pipeline.add_component("sql_querier", sql_query)
sql_pipeline.connect("prompt", "llm")
sql_pipeline.connect("llm.replies", "sql_querier.queries")
# If you want to draw the pipeline, uncomment below πŸ‘‡
sql_pipeline.show()
print("PIPELINE RUNNING")
result = sql_pipeline.run({"prompt": {"question": "On which days of the week are average sales highest?",
"columns": columns}})
print(result["sql_querier"]["results"][0])
'''
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
llm = OpenAIGenerator(model="gpt-4o")
sql_query = SQLiteQuery('data_source.db')
connection = sqlite3.connect('data_source.db')
cur=connection.execute('select * from data_source')
columns = [i[0] for i in cur.description]
print("COLUMNS 2")
print(columns)
cur.close()
#Rag Pipeline
prompt = PromptBuilder(template="""Please generate an SQL query. The query should answer the following Question: {{question}};
If the question cannot be answered given the provided table and columns, return 'no_answer'
The query is to be answered for the table is called 'data_source' with the following
Columns: {{columns}};
Answer:""")
routes = [
{
"condition": "{{'no_answer' not in replies[0]}}",
"output": "{{replies}}",
"output_name": "sql",
"output_type": List[str],
},
{
"condition": "{{'no_answer' in replies[0]}}",
"output": "{{question}}",
"output_name": "go_to_fallback",
"output_type": str,
},
]
router = ConditionalRouter(routes)
fallback_prompt = PromptBuilder(template="""User entered a query that cannot be answered with the given table.
The query was: {{question}} and the table had columns: {{columns}}.
Let the user know why the question cannot be answered""")
fallback_llm = OpenAIGenerator(model="gpt-4")
conditional_sql_pipeline = Pipeline()
conditional_sql_pipeline.add_component("prompt", prompt)
conditional_sql_pipeline.add_component("llm", llm)
conditional_sql_pipeline.add_component("router", router)
conditional_sql_pipeline.add_component("fallback_prompt", fallback_prompt)
conditional_sql_pipeline.add_component("fallback_llm", fallback_llm)
conditional_sql_pipeline.add_component("sql_querier", sql_query)
conditional_sql_pipeline.connect("prompt", "llm")
conditional_sql_pipeline.connect("llm.replies", "router.replies")
conditional_sql_pipeline.connect("router.sql", "sql_querier.queries")
conditional_sql_pipeline.connect("router.go_to_fallback", "fallback_prompt.question")
conditional_sql_pipeline.connect("fallback_prompt", "fallback_llm")
question = "When is my birthday?"
result = conditional_sql_pipeline.run({"prompt": {"question": question,
"columns": columns},
"router": {"question": question},
"fallback_prompt": {"columns": columns}})
def rag_pipeline_func(question: str, columns: str):
result = conditional_sql_pipeline.run({"prompt": {"question": question,
"columns": columns},
"router": {"question": question},
"fallback_prompt": {"columns": columns}})
if 'sql_querier' in result:
reply = result['sql_querier']['results'][0]
elif 'fallback_llm' in result:
reply = result['fallback_llm']['replies'][0]
else:
reply = result["llm"]["replies"][0]
print("reply content")
print(reply.content)
return {"reply": reply.content}