Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
print("import torch")
|
2 |
import torch
|
3 |
|
4 |
print("import gradio")
|
5 |
import gradio as gr
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
print("import huggingface_hub")
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
print("import PIL")
|
11 |
from PIL import Image, ImageDraw
|
12 |
|
13 |
-
print("import numpy")
|
14 |
-
import numpy as np
|
15 |
-
|
16 |
-
print("import json")
|
17 |
-
import json
|
18 |
-
|
19 |
-
print("import opencv")
|
20 |
-
import cv2
|
21 |
-
|
22 |
print("import scipy")
|
23 |
from scipy.ndimage import gaussian_filter
|
24 |
|
25 |
|
26 |
# Constants and Model Downloads
|
27 |
-
|
28 |
-
|
29 |
-
yolov7_custom_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
|
30 |
|
31 |
# Load YOLOv7 Custom Model
|
32 |
print("Load YOLOv7 Custom Model")
|
33 |
model = torch.hub.load('Owaiskhan9654/yolov7-1:main', model='custom', path_or_model=yolov7_custom_weights, force_reload=True)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Image Splitting and Merging Functionality
|
36 |
def split_image(image, tile_size=640, overlap=160):
|
37 |
img_width, img_height = image.size
|
@@ -47,6 +95,8 @@ def split_image(image, tile_size=640, overlap=160):
|
|
47 |
|
48 |
return tiles
|
49 |
|
|
|
|
|
50 |
def merge_bounding_boxes(results, box):
|
51 |
adjusted_bboxes = []
|
52 |
for idx, row in results.pandas().xyxy[0].iterrows():
|
@@ -55,14 +105,17 @@ def merge_bounding_boxes(results, box):
|
|
55 |
"center_x": (row['xmin'] + row['xmax']) / 2 + box[0],
|
56 |
"center_y": (row['ymin'] + row['ymax']) / 2 + box[1],
|
57 |
"xmin": row['xmin'] + box[0],
|
58 |
-
"ymin": row['ymin'] + box[1],
|
59 |
"xmax": row['xmax'] + box[0],
|
|
|
60 |
"ymax": row['ymax'] + box[1],
|
61 |
"confidence": row['confidence'],
|
62 |
}
|
63 |
adjusted_bboxes.append(adjusted_bbox)
|
64 |
return adjusted_bboxes
|
65 |
|
|
|
|
|
|
|
66 |
def draw_bounding_boxes(image, bounding_boxes):
|
67 |
draw = ImageDraw.Draw(image)
|
68 |
for bbox in bounding_boxes:
|
@@ -71,6 +124,7 @@ def draw_bounding_boxes(image, bounding_boxes):
|
|
71 |
draw.text((bbox['xmin'], bbox['ymin']), f"{bbox['class']} {bbox['confidence']:.2f}", fill=color)
|
72 |
return image
|
73 |
|
|
|
74 |
# Non-Max Suppression Implementations
|
75 |
def soft_nms(bounding_boxes, iou_threshold=0.3, sigma=0.5, score_threshold=0.001):
|
76 |
if not bounding_boxes:
|
@@ -107,6 +161,8 @@ def soft_nms(bounding_boxes, iou_threshold=0.3, sigma=0.5, score_threshold=0.001
|
|
107 |
|
108 |
return final_boxes
|
109 |
|
|
|
|
|
110 |
# Density Map Generation and Counting Functions
|
111 |
def generate_density_map(image, bounding_boxes, sigma=4):
|
112 |
density_map = np.zeros((image.height, image.width))
|
@@ -119,9 +175,13 @@ def generate_density_map(image, bounding_boxes, sigma=4):
|
|
119 |
density_map = gaussian_filter(density_map, sigma=sigma)
|
120 |
return density_map
|
121 |
|
|
|
|
|
122 |
def count_from_density_map(density_map, threshold=0.05):
|
123 |
return np.sum(density_map > threshold)
|
124 |
|
|
|
|
|
125 |
# Edge Enhancement Functions
|
126 |
def apply_edge_enhancement(image):
|
127 |
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
@@ -134,6 +194,8 @@ def apply_edge_enhancement(image):
|
|
134 |
enhanced_image = cv2.cvtColor(sobel_combined, cv2.COLOR_GRAY2RGB)
|
135 |
return Image.fromarray(enhanced_image)
|
136 |
|
|
|
|
|
137 |
# Object Detection Functions
|
138 |
def object_detection(image, conf_threshold=0.25, iou_threshold=0.45):
|
139 |
image = Image.fromarray(image)
|
@@ -154,6 +216,8 @@ def object_detection(image, conf_threshold=0.25, iou_threshold=0.45):
|
|
154 |
json_response = json.dumps(final_bounding_boxes, indent=4)
|
155 |
return image_with_boxes, json_response
|
156 |
|
|
|
|
|
157 |
def object_detection_with_edge_enhancement(image, conf_threshold=0.25, iou_threshold=0.45):
|
158 |
image = Image.fromarray(image)
|
159 |
image_enhanced = apply_edge_enhancement(image)
|
@@ -175,6 +239,8 @@ def object_detection_with_edge_enhancement(image, conf_threshold=0.25, iou_thres
|
|
175 |
json_response = json.dumps(final_bounding_boxes, indent=4)
|
176 |
return image_with_boxes, json_response
|
177 |
|
|
|
|
|
178 |
def object_detection_density_edge(image, conf_threshold=0.25, iou_threshold=0.45):
|
179 |
"""Apply edge enhancement and density-based counting."""
|
180 |
image = Image.fromarray(image)
|
@@ -207,73 +273,101 @@ def object_detection_density_edge(image, conf_threshold=0.25, iou_threshold=0.45
|
|
207 |
summary = json.dumps({"object_count": int(object_count)}, indent=4)
|
208 |
return image_with_density, json_response, summary
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
# Gradio Interface Definitions
|
211 |
inputs = [
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
215 |
]
|
216 |
-
outputs_image = [
|
217 |
-
gr.outputs.Image(type="pil", label="Output Image")
|
218 |
-
]
|
219 |
-
outputs_json = gr.Textbox(label="Bounding Boxes JSON")
|
220 |
-
|
221 |
-
title = "<center>Yolov7 Custom Object Detection</center>"
|
222 |
-
description = "<center>Nolen Felten</center>"
|
223 |
-
footer = ("<br><br><center><b>Item Classes it will detect (Total 140 Classes)</b></center>")
|
224 |
-
|
225 |
-
|
226 |
-
interfaces = [
|
227 |
-
# Regular Object Detection Interface
|
228 |
-
gr.Interface(
|
229 |
-
fn=object_detection,
|
230 |
-
inputs=inputs,
|
231 |
-
outputs=[outputs_image, outputs_json],
|
232 |
-
title=title,
|
233 |
-
description=description,
|
234 |
-
article=footer,
|
235 |
-
cache_examples=False,
|
236 |
-
allow_flagging="never"
|
237 |
-
),
|
238 |
-
|
239 |
|
240 |
-
# Edge Enhanced Object Detection Interface
|
241 |
-
gr.Interface(
|
242 |
-
fn=object_detection_with_edge_enhancement,
|
243 |
-
inputs=inputs,
|
244 |
-
outputs=[outputs_image, outputs_json],
|
245 |
-
title="Object Detection with Edge Enhancement",
|
246 |
-
description=description,
|
247 |
-
article=footer,
|
248 |
-
cache_examples=False,
|
249 |
-
allow_flagging="never"
|
250 |
-
)
|
251 |
-
]
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
258 |
]
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
)
|
271 |
|
272 |
# Launch Gradio Interfaces
|
273 |
-
|
274 |
-
interface.launch(debug=True)
|
275 |
-
interface_edge.launch(debug=True)
|
276 |
-
interface_density_edge.launch(debug=True)
|
277 |
-
|
278 |
-
if __name__ == "__main__":
|
279 |
-
launch_interfaces()
|
|
|
1 |
+
print("import io")
|
2 |
+
import io
|
3 |
+
|
4 |
+
print("import requests")
|
5 |
+
import requests
|
6 |
+
|
7 |
+
print("import json")
|
8 |
+
import json
|
9 |
+
|
10 |
+
print("import base64")
|
11 |
+
import base64
|
12 |
+
|
13 |
+
print("import opencv")
|
14 |
+
import cv2
|
15 |
+
|
16 |
print("import torch")
|
17 |
import torch
|
18 |
|
19 |
print("import gradio")
|
20 |
import gradio as gr
|
21 |
|
22 |
+
print("import numpy")
|
23 |
+
import numpy as np
|
24 |
+
|
25 |
+
print("import Roboflow")
|
26 |
+
from roboflow import Roboflow
|
27 |
+
|
28 |
print("import huggingface_hub")
|
29 |
from huggingface_hub import hf_hub_download
|
30 |
|
31 |
print("import PIL")
|
32 |
from PIL import Image, ImageDraw
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
print("import scipy")
|
35 |
from scipy.ndimage import gaussian_filter
|
36 |
|
37 |
|
38 |
# Constants and Model Downloads
|
39 |
+
print("Download YOLO")
|
40 |
+
yolov7_custom_weights = hf_hub_download(repo_id = "nolenfelten/Shelf_Objects_Detection_Yolov7_Pytorch", filename = "best.pt")
|
|
|
41 |
|
42 |
# Load YOLOv7 Custom Model
|
43 |
print("Load YOLOv7 Custom Model")
|
44 |
model = torch.hub.load('Owaiskhan9654/yolov7-1:main', model='custom', path_or_model=yolov7_custom_weights, force_reload=True)
|
45 |
|
46 |
+
# Roboflow
|
47 |
+
print("Initialize Roboflow")
|
48 |
+
rf = Roboflow(api_key="gHiUgOSq9GqTnRy5mErk")
|
49 |
+
project = rf.workspace().project("sku-110k")
|
50 |
+
model = project.version(2).model
|
51 |
+
|
52 |
+
|
53 |
+
def encode_image(image):
|
54 |
+
buffered = io.BytesIO()
|
55 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
def roboflow(image, confidence, overlap, stroke_width=1, labels=False):
|
60 |
+
'''
|
61 |
+
Send the image to Roboflow API for inference.
|
62 |
+
Returns JSON and image with bounding boxes drawn on to it.
|
63 |
+
'''
|
64 |
+
|
65 |
+
json_url = f"https://detect.roboflow.com/sku-110k/2?api_key=gHiUgOSq9GqTnRy5mErk&confidence={confidence}&overlap={overlap}&format=json"
|
66 |
+
image_url = f"https://detect.roboflow.com/sku-110k/2?api_key=gHiUgOSq9GqTnRy5mErk&confidence={confidence}&overlap={overlap}&format=image&labels={str(labels).lower()}&stroke={stroke_width}"
|
67 |
+
|
68 |
+
encoded_image = encode_image(image)
|
69 |
+
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
70 |
+
|
71 |
+
json_request = requests.post(json_url, data=encoded_image, headers=headers)
|
72 |
+
image_request = requests.post(image_url, data=encoded_image, headers=headers)
|
73 |
+
|
74 |
+
response = {
|
75 |
+
"json": json_request.content,
|
76 |
+
"image": image_request.content
|
77 |
+
}
|
78 |
+
|
79 |
+
return response
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
# Image Splitting and Merging Functionality
|
84 |
def split_image(image, tile_size=640, overlap=160):
|
85 |
img_width, img_height = image.size
|
|
|
95 |
|
96 |
return tiles
|
97 |
|
98 |
+
|
99 |
+
|
100 |
def merge_bounding_boxes(results, box):
|
101 |
adjusted_bboxes = []
|
102 |
for idx, row in results.pandas().xyxy[0].iterrows():
|
|
|
105 |
"center_x": (row['xmin'] + row['xmax']) / 2 + box[0],
|
106 |
"center_y": (row['ymin'] + row['ymax']) / 2 + box[1],
|
107 |
"xmin": row['xmin'] + box[0],
|
|
|
108 |
"xmax": row['xmax'] + box[0],
|
109 |
+
"ymin": row['ymin'] + box[1],
|
110 |
"ymax": row['ymax'] + box[1],
|
111 |
"confidence": row['confidence'],
|
112 |
}
|
113 |
adjusted_bboxes.append(adjusted_bbox)
|
114 |
return adjusted_bboxes
|
115 |
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
def draw_bounding_boxes(image, bounding_boxes):
|
120 |
draw = ImageDraw.Draw(image)
|
121 |
for bbox in bounding_boxes:
|
|
|
124 |
draw.text((bbox['xmin'], bbox['ymin']), f"{bbox['class']} {bbox['confidence']:.2f}", fill=color)
|
125 |
return image
|
126 |
|
127 |
+
|
128 |
# Non-Max Suppression Implementations
|
129 |
def soft_nms(bounding_boxes, iou_threshold=0.3, sigma=0.5, score_threshold=0.001):
|
130 |
if not bounding_boxes:
|
|
|
161 |
|
162 |
return final_boxes
|
163 |
|
164 |
+
|
165 |
+
|
166 |
# Density Map Generation and Counting Functions
|
167 |
def generate_density_map(image, bounding_boxes, sigma=4):
|
168 |
density_map = np.zeros((image.height, image.width))
|
|
|
175 |
density_map = gaussian_filter(density_map, sigma=sigma)
|
176 |
return density_map
|
177 |
|
178 |
+
|
179 |
+
|
180 |
def count_from_density_map(density_map, threshold=0.05):
|
181 |
return np.sum(density_map > threshold)
|
182 |
|
183 |
+
|
184 |
+
|
185 |
# Edge Enhancement Functions
|
186 |
def apply_edge_enhancement(image):
|
187 |
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
|
|
194 |
enhanced_image = cv2.cvtColor(sobel_combined, cv2.COLOR_GRAY2RGB)
|
195 |
return Image.fromarray(enhanced_image)
|
196 |
|
197 |
+
|
198 |
+
|
199 |
# Object Detection Functions
|
200 |
def object_detection(image, conf_threshold=0.25, iou_threshold=0.45):
|
201 |
image = Image.fromarray(image)
|
|
|
216 |
json_response = json.dumps(final_bounding_boxes, indent=4)
|
217 |
return image_with_boxes, json_response
|
218 |
|
219 |
+
|
220 |
+
|
221 |
def object_detection_with_edge_enhancement(image, conf_threshold=0.25, iou_threshold=0.45):
|
222 |
image = Image.fromarray(image)
|
223 |
image_enhanced = apply_edge_enhancement(image)
|
|
|
239 |
json_response = json.dumps(final_bounding_boxes, indent=4)
|
240 |
return image_with_boxes, json_response
|
241 |
|
242 |
+
|
243 |
+
|
244 |
def object_detection_density_edge(image, conf_threshold=0.25, iou_threshold=0.45):
|
245 |
"""Apply edge enhancement and density-based counting."""
|
246 |
image = Image.fromarray(image)
|
|
|
273 |
summary = json.dumps({"object_count": int(object_count)}, indent=4)
|
274 |
return image_with_density, json_response, summary
|
275 |
|
276 |
+
|
277 |
+
|
278 |
+
def procedure(image_input, yolov7_confidence_threshold_input, yolov7_IOU_Threshold_input, roboflow_confidence_threshold_input, roboflow_IOU_Threshold_input, roboflow_labels_input, roboflow_stroke_width_input, yolov7_image_output, yolov7_json_output, roboflow_image_output, roboflow_json_output):
|
279 |
+
'''
|
280 |
+
This function takes in an image and applies both YOLOv7 and Roboflow object detection models to it.
|
281 |
+
It then returns the images and JSON results.
|
282 |
+
'''
|
283 |
+
|
284 |
+
print("Begin Roboflow inferences.")
|
285 |
+
roboflow_inference = roboflow(image = image_input, labels=roboflow_labels_input, stroke_width=roboflow_stroke_width_input, confidence = roboflow_confidence_threshold_input, overlap = roboflow_IOU_Threshold_input, )
|
286 |
+
|
287 |
+
yolov7_image, yolov7_json = object_detection(np.array(image_input), yolov7_confidence_threshold_input, yolov7_IOU_Threshold_input)
|
288 |
+
|
289 |
+
roboflow_image = Image.open(io.BytesIO(roboflow_inference["image"]))
|
290 |
+
roboflow_json = roboflow_inference["json"]
|
291 |
+
|
292 |
+
return yolov7_image, yolov7_json, roboflow_image, roboflow_json
|
293 |
+
|
294 |
+
|
295 |
+
# Uploaded image.
|
296 |
+
image_input = gr.Image(shape=(4080, 1836), image_mode="RGB", source="upload", label="Upload Image", optional=False)
|
297 |
+
|
298 |
+
# YOLOv7 Confidence Threshold input.
|
299 |
+
yolov7_confidence_threshold_input = gr.Slider(minimum=0.0, maximum=1.0, value = 0.45, step=0.01, label="YOLOv7 Confidence Threshold")
|
300 |
+
|
301 |
+
# YOLOv7 IOU Threshold.
|
302 |
+
yolov7_IOU_Threshold_input = gr.Slider(minimum=0.0, maximum=1.0, value = 0.45, step=0.01, label="YOLOv7 IOU Threshold")
|
303 |
+
|
304 |
+
# Roboflow Confidence Threshold input.
|
305 |
+
roboflow_confidence_threshold_input = gr.Slider(minimum=0.0, maximum=1.0, value = 0.45, step=0.01, label="Roboflow Confidence Threshold")
|
306 |
+
|
307 |
+
# Roboflow IOU Threshold.
|
308 |
+
roboflow_IOU_Threshold_input = gr.Slider(minimum=0.0, maximum=1.0, value = 0.45, step=0.01, label="Roboflow IOU Threshold")
|
309 |
+
|
310 |
+
# Roboflow Labels.
|
311 |
+
roboflow_labels_input = gr.Checkbox(label="Roboflow Labels")
|
312 |
+
|
313 |
+
# Roboflow Stroke Width.
|
314 |
+
roboflow_stroke_width_input = gr.Radio([1, 2, 5, 10], label="Stroke Width")
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
# YOLOv7 Image Output.
|
319 |
+
yolov7_image_output = gr.Image(type="pil", label="YOLOv7 Output Image")
|
320 |
+
|
321 |
+
# YOLOv7 JSON Output.
|
322 |
+
yolov7_json_output = gr.Textbox(label="YOLOv7 Bounding Boxes JSON")
|
323 |
+
|
324 |
+
# Roboflow Image Output.
|
325 |
+
roboflow_image_output = gr.Image(type="pil", label="Roboflow Output Image")
|
326 |
+
|
327 |
+
# Roboflow JSON Output.
|
328 |
+
roboflow_json_output = gr.Textbox(label="Roboflow Bounding Boxes JSON")
|
329 |
+
|
330 |
+
|
331 |
# Gradio Interface Definitions
|
332 |
inputs = [
|
333 |
+
image_input,
|
334 |
+
yolov7_confidence_threshold_input,
|
335 |
+
yolov7_IOU_Threshold_input,
|
336 |
+
roboflow_confidence_threshold_input,
|
337 |
+
roboflow_IOU_Threshold_input,
|
338 |
+
roboflow_labels_input,
|
339 |
+
roboflow_stroke_width_input,
|
340 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
+
|
344 |
+
outputs = [
|
345 |
+
yolov7_image_output,
|
346 |
+
yolov7_json_output,
|
347 |
+
roboflow_image_output,
|
348 |
+
roboflow_json_output,
|
349 |
]
|
350 |
+
|
351 |
+
|
352 |
+
title = "<center>Cigarette Pack Counter</center>"
|
353 |
+
description = "<center><a href='http://counttek.online'><img src='https://mvp-83056e96f7ab.herokuapp.com/static/countteklogo2.png'></a><br><a href='https://nolenfelten.github.io'>Project by Nolen Felten</a></center>"
|
354 |
+
footer = ("<center><b>Item Classes it will detect (Total 140 Classes)</b></center>")
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
interface = gr.Interface(
|
359 |
+
# Run this function when user clicks "Submit".
|
360 |
+
fn = procedure,
|
361 |
+
|
362 |
+
inputs,
|
363 |
+
|
364 |
+
outputs,
|
365 |
+
title = title,
|
366 |
+
description = description,
|
367 |
+
article = footer,
|
368 |
+
cache_examples = False,
|
369 |
+
allow_flagging = "never"
|
370 |
)
|
371 |
|
372 |
# Launch Gradio Interfaces
|
373 |
+
interface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|